0
mirror of https://github.com/gusmanb/logicanalyzer.git synced 2025-02-05 18:17:44 +00:00
gusmanb-logicanalyzer/Software/decoders/adf435x/pd.py
2024-10-12 12:08:11 +02:00

231 lines
8.7 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2017 Joel Holdsworth <joel@airwebreathe.org.uk>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack_lsb
def disabled_enabled(v):
return ['Disabled', 'Enabled'][v]
def output_power(v):
return '{:+d}dBm'.format([-4, -1, 2, 5][v])
# Notes on the implementation:
# - A register's description is an iterable of tuples which contain:
# The starting bit position, the bit count, the name of a field, and
# an optional parser which interprets the field's content. Parser are
# expected to yield a single text string when they exist. Other types
# of output are passed to Python's .format() routine as is.
# - Bit fields' width in registers determines the range of indices in
# table/tuple lookups. Keep the implementation as robust as possible
# during future maintenance. Avoid Python runtime errors when adjusting
# the decoder.
regs = {
# Register description fields:
# offset, width, name, parser.
0: (
( 3, 12, 'FRAC'),
(15, 16, 'INT',
None, lambda v: 'Not Allowed' if v < 23 else None,
),
),
1: (
( 3, 12, 'MOD'),
(15, 12, 'Phase'),
(27, 1, 'Prescalar', lambda v: ('4/5', '8/9',)[v]),
(28, 1, 'Phase Adjust', lambda v: ('Off', 'On',)[v]),
),
2: (
( 3, 1, 'Counter Reset', disabled_enabled),
( 4, 1, 'Charge Pump Three-State', disabled_enabled),
( 5, 1, 'Power-Down', disabled_enabled),
( 6, 1, 'PD Polarity', lambda v: ('Negative', 'Positive',)[v]),
( 7, 1, 'LDP', lambda v: ('10ns', '6ns',)[v]),
( 8, 1, 'LDF', lambda v: ('FRAC-N', 'INT-N',)[v]),
( 9, 4, 'Charge Pump Current Setting',
lambda v: '{curr:0.2f}mA @ 5.1kΩ'.format(curr = (
0.31, 0.63, 0.94, 1.25, 1.56, 1.88, 2.19, 2.50,
2.81, 3.13, 3.44, 3.75, 4.06, 4.38, 4.69, 5.00,
)[v])),
(13, 1, 'Double Buffer', disabled_enabled),
(14, 10, 'R Counter'),
(24, 1, 'RDIV2', disabled_enabled),
(25, 1, 'Reference Doubler', disabled_enabled),
(26, 3, 'MUXOUT',
lambda v: '{text}'.format(text = (
'Three-State Output', 'DVdd', 'DGND',
'R Counter Output', 'N Divider Output',
'Analog Lock Detect', 'Digital Lock Detect',
'Reserved',
)[v])),
(29, 2, 'Low Noise and Low Spur Modes',
lambda v: '{text}'.format(text = (
'Low Noise Mode', 'Reserved', 'Reserved', 'Low Spur Mode',
)[v])),
),
3: (
( 3, 12, 'Clock Divider'),
(15, 2, 'Clock Divider Mode',
lambda v: '{text}'.format(text = (
'Clock Divider Off', 'Fast Lock Enable',
'Resync Enable', 'Reserved',
)[v])),
(18, 1, 'CSR Enable', disabled_enabled),
(21, 1, 'Charge Cancellation', disabled_enabled),
(22, 1, 'ABP', lambda v: ('6ns (FRAC-N)', '3ns (INT-N)',)[v]),
(23, 1, 'Band Select Clock Mode', lambda v: ('Low', 'High',)[v]),
),
4: (
( 3, 2, 'Output Power', output_power),
( 5, 1, 'Output Enable', disabled_enabled),
( 6, 2, 'AUX Output Power', output_power),
( 8, 1, 'AUX Output Select',
lambda v: ('Divided Output', 'Fundamental',)[v]),
( 9, 1, 'AUX Output Enable', disabled_enabled),
(10, 1, 'MTLD', disabled_enabled),
(11, 1, 'VCO Power-Down',
lambda v: 'VCO Powered {ud}'.format(ud = 'Down' if v else 'Up')),
(12, 8, 'Band Select Clock Divider'),
(20, 3, 'RF Divider Select', lambda v: '÷{:d}'.format(2 ** v)),
(23, 1, 'Feedback Select', lambda v: ('Divided', 'Fundamental',)[v]),
),
5: (
(22, 2, 'LD Pin Mode',
lambda v: '{text}'.format(text = (
'Low', 'Digital Lock Detect', 'Low', 'High',
)[v])),
),
}
( ANN_REG, ANN_WARN, ) = range(2)
class Decoder(srd.Decoder):
api_version = 3
id = 'adf435x'
name = 'ADF435x'
longname = 'Analog Devices ADF4350/1'
desc = 'Wideband synthesizer with integrated VCO.'
license = 'gplv3+'
inputs = ['spi']
outputs = []
tags = ['Clock/timing', 'IC', 'Wireless/RF']
annotations = (
# Sent from the host to the chip.
('write', 'Register write'),
('warning', "Warnings"),
)
annotation_rows = (
('writes', 'Register writes', (ANN_REG,)),
('warnings', 'Warnings', (ANN_WARN,)),
)
def __init__(self):
self.reset()
def reset(self):
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putg(self, ss, es, cls, data):
self.put(ss, es, self.out_ann, [ cls, data, ])
def decode_bits(self, offset, width):
'''Extract a bit field. Expects LSB input data.'''
bits = self.bits[offset:][:width]
ss, es = bits[-1][1], bits[0][2]
value = bitpack_lsb(bits, 0)
return ( value, ( ss, es, ))
def decode_field(self, name, offset, width, parser = None, checker = None):
'''Interpret a bit field. Emits an annotation.'''
# Get the register field's content and position.
val, ( ss, es, ) = self.decode_bits(offset, width)
# Have the field's content formatted, emit an annotation.
formatted = parser(val) if parser else '{}'.format(val)
if formatted is not None:
text = ['{name}: {val}'.format(name = name, val = formatted)]
else:
text = ['{name}'.format(name = name)]
if text:
self.putg(ss, es, ANN_REG, text)
# Have the field's content checked, emit an optional warning.
warn = checker(val) if checker else None
if warn:
text = ['{}'.format(warn)]
self.putg(ss, es, ANN_WARN, text)
def decode_word(self, ss, es, bits):
'''Interpret a 32bit word after accumulation completes.'''
# SPI transfer content must be exactly one 32bit word.
count = len(self.bits)
if count != 32:
text = [
'Frame error: Bit count: want 32, got {}'.format(count),
'Frame error: Bit count',
'Frame error',
]
self.putg(ss, es, ANN_WARN, text)
return
# Holding bits in LSB order during interpretation simplifies
# bit field extraction. And annotation emitting routines expect
# this reverse order of bits' timestamps.
self.bits.reverse()
# Determine which register was accessed.
reg_addr, ( reg_ss, reg_es, ) = self.decode_bits(0, 3)
text = [
'Register: {addr}'.format(addr = reg_addr),
'Reg: {addr}'.format(addr = reg_addr),
'[{addr}]'.format(addr = reg_addr),
]
self.putg(reg_ss, reg_es, ANN_REG, text)
# Interpret the register's content (when parsers are available).
field_descs = regs.get(reg_addr, None)
if not field_descs:
return
for field_desc in field_descs:
parser = None
checker = None
if len(field_desc) == 3:
start, count, name, = field_desc
elif len(field_desc) == 4:
start, count, name, parser = field_desc
elif len(field_desc) == 5:
start, count, name, parser, checker = field_desc
else:
# Unsupported regs{} syntax, programmer's error.
return
self.decode_field(name, start, count, parser, checker)
def decode(self, ss, es, data):
ptype, _, _ = data
if ptype == 'TRANSFER':
# Process accumulated bits after completion of a transfer.
self.decode_word(ss, es, self.bits)
self.bits.clear()
if ptype == 'BITS':
_, mosi_bits, miso_bits = data
# Accumulate bits in MSB order as they are seen in SPI frames.
msb_bits = mosi_bits.copy()
msb_bits.reverse()
self.bits.extend(msb_bits)