mirror of
https://github.com/gusmanb/logicanalyzer.git
synced 2025-02-05 10:08:06 +00:00
365 lines
14 KiB
Python
365 lines
14 KiB
Python
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 2 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
|
|
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
|
|
# TODO: Implement support for detecting various bus errors.
|
|
|
|
from common.srdhelper import bitpack_msb
|
|
import sigrokdecode as srd
|
|
|
|
'''
|
|
OUTPUT_PYTHON format:
|
|
|
|
Packet:
|
|
[<ptype>, <pdata>]
|
|
|
|
<ptype>:
|
|
- 'START' (START condition)
|
|
- 'START REPEAT' (Repeated START condition)
|
|
- 'ADDRESS READ' (Slave address, read)
|
|
- 'ADDRESS WRITE' (Slave address, write)
|
|
- 'DATA READ' (Data, read)
|
|
- 'DATA WRITE' (Data, write)
|
|
- 'STOP' (STOP condition)
|
|
- 'ACK' (ACK bit)
|
|
- 'NACK' (NACK bit)
|
|
- 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
|
|
|
|
<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
|
|
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
|
|
For example, a slave address field could be 0x51 (instead of 0xa2).
|
|
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
|
|
For 'BITS' <pdata> is a sequence of tuples of bit values and their start and
|
|
stop positions, in LSB first order (although the I2C protocol is MSB first).
|
|
'''
|
|
|
|
# Meaning of table items:
|
|
# command -> [annotation class, annotation text in order of decreasing length]
|
|
proto = {
|
|
'START': [0, 'Start', 'S'],
|
|
'START REPEAT': [1, 'Start repeat', 'Sr'],
|
|
'STOP': [2, 'Stop', 'P'],
|
|
'ACK': [3, 'ACK', 'A'],
|
|
'NACK': [4, 'NACK', 'N'],
|
|
'BIT': [5, '{b:1d}'],
|
|
'ADDRESS READ': [6, 'Address read: {b:02X}', 'AR: {b:02X}', '{b:02X}'],
|
|
'ADDRESS WRITE': [7, 'Address write: {b:02X}', 'AW: {b:02X}', '{b:02X}'],
|
|
'DATA READ': [8, 'Data read: {b:02X}', 'DR: {b:02X}', '{b:02X}'],
|
|
'DATA WRITE': [9, 'Data write: {b:02X}', 'DW: {b:02X}', '{b:02X}'],
|
|
'WARN': [10, '{text}'],
|
|
}
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = 'i2c'
|
|
name = 'I²C'
|
|
longname = 'Inter-Integrated Circuit'
|
|
desc = 'Two-wire, multi-master, serial bus.'
|
|
license = 'gplv2+'
|
|
inputs = ['logic']
|
|
outputs = ['i2c']
|
|
tags = ['Embedded/industrial']
|
|
channels = (
|
|
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
|
|
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
|
|
)
|
|
options = (
|
|
{'id': 'address_format', 'desc': 'Displayed slave address format',
|
|
'default': 'shifted', 'values': ('shifted', 'unshifted')},
|
|
)
|
|
annotations = (
|
|
('start', 'Start condition'),
|
|
('repeat-start', 'Repeat start condition'),
|
|
('stop', 'Stop condition'),
|
|
('ack', 'ACK'),
|
|
('nack', 'NACK'),
|
|
('bit', 'Data/address bit'),
|
|
('address-read', 'Address read'),
|
|
('address-write', 'Address write'),
|
|
('data-read', 'Data read'),
|
|
('data-write', 'Data write'),
|
|
('warning', 'Warning'),
|
|
)
|
|
annotation_rows = (
|
|
('bits', 'Bits', (5,)),
|
|
('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
|
|
('warnings', 'Warnings', (10,)),
|
|
)
|
|
binary = (
|
|
('address-read', 'Address read'),
|
|
('address-write', 'Address write'),
|
|
('data-read', 'Data read'),
|
|
('data-write', 'Data write'),
|
|
)
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.samplerate = None
|
|
self.is_write = None
|
|
self.rem_addr_bytes = None
|
|
self.slave_addr_7 = None
|
|
self.slave_addr_10 = None
|
|
self.is_repeat_start = False
|
|
self.pdu_start = None
|
|
self.pdu_bits = 0
|
|
self.data_bits = []
|
|
self.bitwidth = 0
|
|
|
|
def metadata(self, key, value):
|
|
if key == srd.SRD_CONF_SAMPLERATE:
|
|
self.samplerate = value
|
|
|
|
def start(self):
|
|
self.out_python = self.register(srd.OUTPUT_PYTHON)
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
self.out_binary = self.register(srd.OUTPUT_BINARY)
|
|
self.out_bitrate = self.register(srd.OUTPUT_META,
|
|
meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
|
|
|
|
def putg(self, ss, es, cls, text):
|
|
self.put(ss, es, self.out_ann, [cls, text])
|
|
|
|
def putp(self, ss, es, data):
|
|
self.put(ss, es, self.out_python, data)
|
|
|
|
def putb(self, ss, es, data):
|
|
self.put(ss, es, self.out_binary, data)
|
|
|
|
def _wants_start(self):
|
|
# Check whether START is required (to sync to the input stream).
|
|
return self.pdu_start is None
|
|
|
|
def _collects_address(self):
|
|
# Check whether the transfer still is in the address phase (is
|
|
# still collecting address and r/w details, or has not started
|
|
# collecting it).
|
|
return self.rem_addr_bytes is None or self.rem_addr_bytes != 0
|
|
|
|
def _collects_byte(self):
|
|
# Check whether bits of a byte are being collected. Outside of
|
|
# the data byte, the bit is the ACK/NAK slot.
|
|
return self.data_bits is None or len(self.data_bits) < 8
|
|
|
|
def handle_start(self, ss, es):
|
|
if self.is_repeat_start:
|
|
cmd = 'START REPEAT'
|
|
else:
|
|
cmd = 'START'
|
|
self.pdu_start = ss
|
|
self.pdu_bits = 0
|
|
self.putp(ss, es, [cmd, None])
|
|
cls, texts = proto[cmd][0], proto[cmd][1:]
|
|
self.putg(ss, es, cls, texts)
|
|
self.is_repeat_start = True
|
|
self.is_write = None
|
|
self.slave_addr_7 = None
|
|
self.slave_addr_10 = None
|
|
self.rem_addr_bytes = None
|
|
self.data_bits.clear()
|
|
self.bitwidth = 0
|
|
|
|
# Gather 8 bits of data plus the ACK/NACK bit.
|
|
def handle_address_or_data(self, ss, es, value):
|
|
self.pdu_bits += 1
|
|
|
|
# Accumulate a byte's bits, including its start position.
|
|
# Accumulate individual bits and their start/end sample numbers
|
|
# as we see them. Get the start sample number at the time when
|
|
# the bit value gets sampled. Assume the start of the next bit
|
|
# as the end sample number of the previous bit. Guess the last
|
|
# bit's end sample number from the second last bit's width.
|
|
# Keep the bits in receive order (MSB first) during accumulation.
|
|
# (gsi: Strictly speaking falling SCL would be the end of the
|
|
# bit value's validity. That'd break compatibility though.)
|
|
if self.data_bits:
|
|
self.data_bits[-1][2] = ss
|
|
self.data_bits.append([value, ss, es])
|
|
if len(self.data_bits) < 8:
|
|
return
|
|
self.bitwidth = self.data_bits[-2][2] - self.data_bits[-3][2]
|
|
self.data_bits[-1][2] = self.data_bits[-1][1] + self.bitwidth
|
|
|
|
# Get the byte value. Address and data are transmitted MSB-first.
|
|
d = bitpack_msb(self.data_bits, 0)
|
|
ss_byte, es_byte = self.data_bits[0][1], self.data_bits[-1][2]
|
|
|
|
# Process the address bytes at the start of a transfer. The
|
|
# first byte will carry the R/W bit, and all of the 7bit address
|
|
# or part of a 10bit address. Bit pattern 0b11110xxx signals
|
|
# that another byte follows which carries the remaining bits of
|
|
# a 10bit slave address.
|
|
is_address = self._collects_address()
|
|
if is_address:
|
|
addr_byte = d
|
|
if self.rem_addr_bytes is None:
|
|
if (addr_byte & 0xf8) == 0xf0:
|
|
self.rem_addr_bytes = 2
|
|
self.slave_addr_7 = None
|
|
self.slave_addr_10 = addr_byte & 0x06
|
|
self.slave_addr_10 <<= 7
|
|
else:
|
|
self.rem_addr_bytes = 1
|
|
self.slave_addr_7 = addr_byte >> 1
|
|
self.slave_addr_10 = None
|
|
has_rw_bit = self.is_write is None
|
|
if self.is_write is None:
|
|
read_bit = bool(addr_byte & 1)
|
|
if self.options['address_format'] == 'shifted':
|
|
d >>= 1
|
|
self.is_write = False if read_bit else True
|
|
elif self.slave_addr_10 is not None:
|
|
self.slave_addr_10 |= addr_byte
|
|
else:
|
|
cls, texts = proto['WARN'][0], proto['WARN'][1:]
|
|
msg = 'Unhandled address byte'
|
|
texts = [t.format(text = msg) for t in texts]
|
|
self.putg(ss_byte, es_byte, cls, texts)
|
|
is_write = self.is_write
|
|
is_seven = self.slave_addr_7 is not None
|
|
|
|
# Determine annotation classes depending on whether the byte is
|
|
# an address or payload data, and whether it's written or read.
|
|
bin_class = -1
|
|
if is_address and is_write:
|
|
cmd = 'ADDRESS WRITE'
|
|
bin_class = 1
|
|
elif is_address and not is_write:
|
|
cmd = 'ADDRESS READ'
|
|
bin_class = 0
|
|
elif not is_address and is_write:
|
|
cmd = 'DATA WRITE'
|
|
bin_class = 3
|
|
elif not is_address and not is_write:
|
|
cmd = 'DATA READ'
|
|
bin_class = 2
|
|
|
|
# Reverse the list of bits to LSB first order before emitting
|
|
# annotations and passing bits to upper layers. This may be
|
|
# unexpected because the protocol is MSB first, but it keeps
|
|
# backwards compatibility.
|
|
lsb_bits = self.data_bits[:]
|
|
lsb_bits.reverse()
|
|
self.putp(ss_byte, es_byte, ['BITS', lsb_bits])
|
|
self.putp(ss_byte, es_byte, [cmd, d])
|
|
|
|
self.putb(ss_byte, es_byte, [bin_class, bytes([d])])
|
|
|
|
for bit_value, ss_bit, es_bit in lsb_bits:
|
|
cls, texts = proto['BIT'][0], proto['BIT'][1:]
|
|
texts = [t.format(b = bit_value) for t in texts]
|
|
self.putg(ss_bit, es_bit, cls, texts)
|
|
|
|
if is_address and has_rw_bit:
|
|
# Assign the last bit's location to the R/W annotation.
|
|
# Adjust the address value's location to the left.
|
|
ss_bit, es_bit = self.data_bits[-1][1], self.data_bits[-1][2]
|
|
es_byte = self.data_bits[-2][2]
|
|
cls = proto[cmd][0]
|
|
w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R']
|
|
self.putg(ss_bit, es_bit, cls, w)
|
|
|
|
cls, texts = proto[cmd][0], proto[cmd][1:]
|
|
texts = [t.format(b = d) for t in texts]
|
|
self.putg(ss_byte, es_byte, cls, texts)
|
|
|
|
def get_ack(self, ss, es, value):
|
|
ss_bit, es_bit = ss, es
|
|
cmd = 'ACK' if value == 0 else 'NACK'
|
|
self.putp(ss_bit, es_bit, [cmd, None])
|
|
cls, texts = proto[cmd][0], proto[cmd][1:]
|
|
self.putg(ss_bit, es_bit, cls, texts)
|
|
# Slave addresses can span one or two bytes, before data bytes
|
|
# follow. There can be an arbitrary number of data bytes. Stick
|
|
# with getting more address bytes if applicable, or enter or
|
|
# remain in the data phase of the transfer otherwise.
|
|
if self.rem_addr_bytes:
|
|
self.rem_addr_bytes -= 1
|
|
self.data_bits.clear()
|
|
|
|
def handle_stop(self, ss, es):
|
|
# Meta bitrate
|
|
if self.samplerate and self.pdu_start:
|
|
elapsed = es - self.pdu_start + 1
|
|
elapsed /= self.samplerate
|
|
bitrate = int(1 / elapsed * self.pdu_bits)
|
|
ss_meta, es_meta = self.pdu_start, es
|
|
self.put(ss_meta, es_meta, self.out_bitrate, bitrate)
|
|
self.pdu_start = None
|
|
self.pdu_bits = 0
|
|
|
|
cmd = 'STOP'
|
|
self.putp(ss, es, [cmd, None])
|
|
cls, texts = proto[cmd][0], proto[cmd][1:]
|
|
self.putg(ss, es, cls, texts)
|
|
self.is_repeat_start = False
|
|
self.is_write = None
|
|
self.data_bits.clear()
|
|
|
|
def decode(self):
|
|
# Check for several bus conditions. Determine sample numbers
|
|
# here and pass ss, es, and bit values to handling routines.
|
|
while True:
|
|
# State machine.
|
|
# BEWARE! This implementation expects to see valid traffic,
|
|
# is rather picky in which phase which symbols get handled.
|
|
# This attempts to support severely undersampled captures,
|
|
# which a previous implementation happened to read instead
|
|
# of rejecting the inadequate input data.
|
|
# NOTE that handling bits at the start of their validity,
|
|
# and assuming that they remain valid until the next bit
|
|
# starts, is also done for backwards compatibility.
|
|
if self._wants_start():
|
|
# Wait for a START condition (S): SCL = high, SDA = falling.
|
|
pins = self.wait({0: 'h', 1: 'f'})
|
|
ss, es = self.samplenum, self.samplenum
|
|
self.handle_start(ss, es)
|
|
elif self._collects_address() and self._collects_byte():
|
|
# Wait for a data bit: SCL = rising.
|
|
pins = self.wait({0: 'r'})
|
|
_, sda = pins
|
|
ss, es = self.samplenum, self.samplenum + self.bitwidth
|
|
self.handle_address_or_data(ss, es, sda)
|
|
elif self._collects_byte():
|
|
# Wait for any of the following conditions (or combinations):
|
|
# a) Data sampling of receiver: SCL = rising, and/or
|
|
# b) START condition (S): SCL = high, SDA = falling, and/or
|
|
# c) STOP condition (P): SCL = high, SDA = rising
|
|
pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
|
|
|
|
# Check which of the condition(s) matched and handle them.
|
|
if self.matched[0]:
|
|
_, sda = pins
|
|
ss, es = self.samplenum, self.samplenum + self.bitwidth
|
|
self.handle_address_or_data(ss, es, sda)
|
|
elif self.matched[1]:
|
|
ss, es = self.samplenum, self.samplenum
|
|
self.handle_start(ss, es)
|
|
elif self.matched[2]:
|
|
ss, es = self.samplenum, self.samplenum
|
|
self.handle_stop(ss, es)
|
|
else:
|
|
# Wait for a data/ack bit: SCL = rising.
|
|
pins = self.wait({0: 'r'})
|
|
_, sda = pins
|
|
ss, es = self.samplenum, self.samplenum + self.bitwidth
|
|
self.get_ack(ss, es, sda)
|