0
mirror of https://github.com/gusmanb/logicanalyzer.git synced 2025-02-05 18:17:44 +00:00
gusmanb-logicanalyzer/Software/decoders/ir_nec/pd.py
2024-10-12 12:08:11 +02:00

301 lines
12 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
from common.srdhelper import bitpack
from .lists import *
import sigrokdecode as srd
# Concentrate all timing constraints of the IR protocol here in a single
# location at the top of the source, to raise awareness and to simplify
# review and adjustment. The tolerance is an arbitrary choice, available
# literature does not mention any. The inter-frame timeout is not a part
# of the protocol, but an implementation detail of this sigrok decoder.
_TIME_TOL = 8 # tolerance, in percent
_TIME_IDLE = 20.0 # inter-frame timeout, in ms
_TIME_LC = 13.5 # leader code, in ms
_TIME_RC = 11.25 # repeat code, in ms
_TIME_ONE = 2.25 # one data bit, in ms
_TIME_ZERO = 1.125 # zero data bit, in ms
_TIME_STOP = 0.562 # stop bit, in ms
class SamplerateError(Exception):
pass
class Pin:
IR, = range(1)
class Ann:
BIT, AGC, LONG_PAUSE, SHORT_PAUSE, STOP_BIT, \
LEADER_CODE, ADDR, ADDR_INV, CMD, CMD_INV, REPEAT_CODE, \
REMOTE, WARN = range(13)
class Decoder(srd.Decoder):
api_version = 3
id = 'ir_nec'
name = 'IR NEC'
longname = 'IR NEC'
desc = 'NEC infrared remote control protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IR']
channels = (
{'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
'values': ('auto', 'active-low', 'active-high')},
{'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0},
{'id': 'extended', 'desc': 'Extended NEC Protocol',
'default': 'no', 'values': ('yes', 'no')},
)
annotations = (
('bit', 'Bit'),
('agc-pulse', 'AGC pulse'),
('longpause', 'Long pause'),
('shortpause', 'Short pause'),
('stop-bit', 'Stop bit'),
('leader-code', 'Leader code'),
('addr', 'Address'),
('addr-inv', 'Address#'),
('cmd', 'Command'),
('cmd-inv', 'Command#'),
('repeat-code', 'Repeat code'),
('remote', 'Remote'),
('warning', 'Warning'),
)
annotation_rows = (
('bits', 'Bits', (Ann.BIT, Ann.AGC, Ann.LONG_PAUSE, Ann.SHORT_PAUSE, Ann.STOP_BIT)),
('fields', 'Fields', (Ann.LEADER_CODE, Ann.ADDR, Ann.ADDR_INV, Ann.CMD, Ann.CMD_INV, Ann.REPEAT_CODE)),
('remote-vals', 'Remote', (Ann.REMOTE,)),
('warnings', 'Warnings', (Ann.WARN,)),
)
def putx(self, data):
self.put(self.ss_start, self.samplenum, self.out_ann, data)
def putb(self, data):
self.put(self.ss_bit, self.samplenum, self.out_ann, data)
def putd(self, data, bit_count):
name = self.state.title()
d = {'ADDRESS': Ann.ADDR, 'ADDRESS#': Ann.ADDR_INV,
'COMMAND': Ann.CMD, 'COMMAND#': Ann.CMD_INV}
s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'],
'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']}
fmt = '{{}}: 0x{{:0{}X}}'.format(bit_count // 4)
self.putx([d[self.state], [
fmt.format(name, data),
fmt.format(s[self.state][0], data),
fmt.format(s[self.state][1], data),
s[self.state][1],
]])
def putstop(self, ss):
self.put(ss, ss + self.stop, self.out_ann,
[Ann.STOP_BIT, ['Stop bit', 'Stop', 'St', 'S']])
def putpause(self, p):
self.put(self.ss_start, self.ss_other_edge, self.out_ann,
[Ann.AGC, ['AGC pulse', 'AGC', 'A']])
idx = Ann.LONG_PAUSE if p == 'Long' else Ann.SHORT_PAUSE
self.put(self.ss_other_edge, self.samplenum, self.out_ann, [idx, [
'{} pause'.format(p),
'{}-pause'.format(p[0]),
'{}P'.format(p[0]),
'P',
]])
def putremote(self):
dev = address.get(self.addr, 'Unknown device')
buttons = command.get(self.addr, {})
btn = buttons.get(self.cmd, ['Unknown', 'Unk'])
self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann, [Ann.REMOTE, [
'{}: {}'.format(dev, btn[0]),
'{}: {}'.format(dev, btn[1]),
'{}'.format(btn[1]),
]])
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0
self.data = []
self.addr = self.cmd = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def calc_rate(self):
self.tolerance = _TIME_TOL / 100
self.lc = int(self.samplerate * _TIME_LC / 1000) - 1
self.rc = int(self.samplerate * _TIME_RC / 1000) - 1
self.dazero = int(self.samplerate * _TIME_ZERO / 1000) - 1
self.daone = int(self.samplerate * _TIME_ONE / 1000) - 1
self.stop = int(self.samplerate * _TIME_STOP / 1000) - 1
self.idle_to = int(self.samplerate * _TIME_IDLE / 1000) - 1
def compare_with_tolerance(self, measured, base):
return (measured >= base * (1 - self.tolerance)
and measured <= base * (1 + self.tolerance))
def handle_bit(self, tick):
ret = None
if self.compare_with_tolerance(tick, self.dazero):
ret = 0
elif self.compare_with_tolerance(tick, self.daone):
ret = 1
if ret in (0, 1):
self.putb([Ann.BIT, ['{:d}'.format(ret)]])
self.data.append(ret)
self.ss_bit = self.samplenum
def data_ok(self, check, want_len):
name = self.state.title()
normal, inverted = bitpack(self.data[:8]), bitpack(self.data[8:])
valid = (normal ^ inverted) == 0xff
show = inverted if self.state.endswith('#') else normal
is_ext_addr = self.is_extended and self.state == 'ADDRESS'
if is_ext_addr:
normal = bitpack(self.data)
show = normal
valid = True
if len(self.data) == want_len:
if self.state == 'ADDRESS':
self.addr = normal
if self.state == 'COMMAND':
self.cmd = normal
self.putd(show, want_len)
self.ss_start = self.samplenum
if is_ext_addr:
self.data = []
self.ss_bit = self.ss_start = self.samplenum
return True
self.putd(show, want_len)
if check and not valid:
warn_show = bitpack(self.data)
self.putx([Ann.WARN, ['{} error: 0x{:04X}'.format(name, warn_show)]])
self.data = []
self.ss_bit = self.ss_start = self.samplenum
return valid
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
self.calc_rate()
cd_count = None
if self.options['cd_freq']:
cd_count = int(self.samplerate / self.options['cd_freq']) + 1
prev_ir = None
if self.options['polarity'] == 'auto':
# Take sample 0 as reference.
curr_level, = self.wait({'skip': 0})
active = 1 - curr_level
else:
active = 0 if self.options['polarity'] == 'active-low' else 1
self.is_extended = self.options['extended'] == 'yes'
want_addr_len = 16 if self.is_extended else 8
while True:
# Detect changes in the presence of an active input signal.
# The decoder can either be fed an already filtered RX signal
# or optionally can detect the presence of a carrier. Periods
# of inactivity (signal changes slower than the carrier freq,
# if specified) pass on the most recently sampled level. This
# approach works for filtered and unfiltered input alike, and
# only slightly extends the active phase of input signals with
# carriers included by one period of the carrier frequency.
# IR based communication protocols can cope with this slight
# inaccuracy just fine by design. Enabling carrier detection
# on already filtered signals will keep the length of their
# active period, but will shift their signal changes by one
# carrier period before they get passed to decoding logic.
if cd_count:
(cur_ir,) = self.wait([{Pin.IR: 'e'}, {'skip': cd_count}])
if self.matched[0]:
cur_ir = active
if cur_ir == prev_ir:
continue
prev_ir = cur_ir
self.ir = cur_ir
else:
(self.ir,) = self.wait({Pin.IR: 'e'})
if self.ir != active:
# Save the location of the non-active edge (recessive),
# then wait for the next edge. Immediately process the
# end of the STOP bit which completes an IR frame.
self.ss_other_edge = self.samplenum
if self.state != 'STOP':
continue
# Reset internal state for long periods of idle level.
width = self.samplenum - self.ss_bit
if width >= self.idle_to and self.state != 'STOP':
self.reset()
# State machine.
if self.state == 'IDLE':
if self.compare_with_tolerance(width, self.lc):
self.putpause('Long')
self.putx([Ann.LEADER_CODE, ['Leader code', 'Leader', 'LC', 'L']])
self.ss_remote = self.ss_start
self.data = []
self.state = 'ADDRESS'
elif self.compare_with_tolerance(width, self.rc):
self.putpause('Short')
self.putstop(self.samplenum)
self.samplenum += self.stop
self.putx([Ann.REPEAT_CODE, ['Repeat code', 'Repeat', 'RC', 'R']])
self.data = []
self.ss_bit = self.ss_start = self.samplenum
elif self.state == 'ADDRESS':
self.handle_bit(width)
if len(self.data) == want_addr_len:
self.data_ok(False, want_addr_len)
self.state = 'COMMAND' if self.is_extended else 'ADDRESS#'
elif self.state == 'ADDRESS#':
self.handle_bit(width)
if len(self.data) == 16:
self.data_ok(True, 8)
self.state = 'COMMAND'
elif self.state == 'COMMAND':
self.handle_bit(width)
if len(self.data) == 8:
self.data_ok(False, 8)
self.state = 'COMMAND#'
elif self.state == 'COMMAND#':
self.handle_bit(width)
if len(self.data) == 16:
self.data_ok(True, 8)
self.state = 'STOP'
elif self.state == 'STOP':
self.putstop(self.ss_bit)
self.putremote()
self.ss_bit = self.ss_start = self.samplenum
self.state = 'IDLE'