mirror of
https://github.com/gusmanb/logicanalyzer.git
synced 2025-02-05 18:17:44 +00:00
286 lines
10 KiB
Python
286 lines
10 KiB
Python
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2013-2016 Uwe Hermann <uwe@hermann-uwe.de>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 2 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
import sigrokdecode as srd
|
|
from common.srdhelper import bitpack
|
|
|
|
'''
|
|
OUTPUT_PYTHON format:
|
|
|
|
Packet:
|
|
[<ptype>, <pdata>]
|
|
|
|
<ptype>, <pdata>
|
|
- 'ITEM', [<item>, <itembitsize>]
|
|
- 'WORD', [<word>, <wordbitsize>, <worditemcount>]
|
|
|
|
<item>:
|
|
- A single item (a number). It can be of arbitrary size. The max. number
|
|
of bits in this item is specified in <itembitsize>.
|
|
|
|
<itembitsize>:
|
|
- The size of an item (in bits). For a 4-bit parallel bus this is 4,
|
|
for a 16-bit parallel bus this is 16, and so on.
|
|
|
|
<word>:
|
|
- A single word (a number). It can be of arbitrary size. The max. number
|
|
of bits in this word is specified in <wordbitsize>. The (exact) number
|
|
of items in this word is specified in <worditemcount>.
|
|
|
|
<wordbitsize>:
|
|
- The size of a word (in bits). For a 2-item word with 8-bit items
|
|
<wordbitsize> is 16, for a 3-item word with 4-bit items <wordbitsize>
|
|
is 12, and so on.
|
|
|
|
<worditemcount>:
|
|
- The size of a word (in number of items). For a 4-item word (no matter
|
|
how many bits each item consists of) <worditemcount> is 4, for a 7-item
|
|
word <worditemcount> is 7, and so on.
|
|
'''
|
|
|
|
NUM_CHANNELS = 16
|
|
|
|
class Pin:
|
|
CLOCK = 0
|
|
DATA_0 = CLOCK + 1
|
|
DATA_N = DATA_0 + NUM_CHANNELS
|
|
# BEWARE! DATA_N points _beyond_ the data partition (Python range(3)
|
|
# semantics, useful to have to simplify other code locations).
|
|
RESET = DATA_N
|
|
|
|
class Ann:
|
|
ITEM, WORD, WARN = range(3)
|
|
|
|
class ChannelError(Exception):
|
|
pass
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = 'parallel'
|
|
name = 'Parallel'
|
|
longname = 'Parallel sync bus'
|
|
desc = 'Generic parallel synchronous bus.'
|
|
license = 'gplv2+'
|
|
inputs = ['logic']
|
|
outputs = ['parallel']
|
|
tags = ['Util']
|
|
optional_channels = tuple(
|
|
[{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] +
|
|
[
|
|
{'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i}
|
|
for i in range(NUM_CHANNELS)
|
|
] +
|
|
[{'id': 'rst', 'name': 'RST', 'desc': 'RESET line'}]
|
|
)
|
|
options = (
|
|
{'id': 'clock_edge', 'desc': 'Clock edge to sample on',
|
|
'default': 'rising', 'values': ('rising', 'falling', 'either')},
|
|
{'id': 'reset_polarity', 'desc': 'Reset line polarity',
|
|
'default': 'low-active', 'values': ('low-active', 'high-active')},
|
|
{'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)',
|
|
'default': 0},
|
|
{'id': 'endianness', 'desc': 'Data endianness',
|
|
'default': 'little', 'values': ('little', 'big')},
|
|
)
|
|
annotations = (
|
|
('item', 'Item'),
|
|
('word', 'Word'),
|
|
('warning', 'Warning'),
|
|
)
|
|
annotation_rows = (
|
|
('items', 'Items', (Ann.ITEM,)),
|
|
('words', 'Words', (Ann.WORD,)),
|
|
('warnings', 'Warnings', (Ann.WARN,)),
|
|
)
|
|
binary = (
|
|
('binary', 'Binary'),
|
|
)
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.pend_item = None
|
|
self.word_items = []
|
|
|
|
def start(self):
|
|
self.out_python = self.register(srd.OUTPUT_PYTHON)
|
|
self.out_binary = self.register(srd.OUTPUT_BINARY)
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
|
|
def putg(self, ss, es, ann, txts):
|
|
self.put(ss, es, self.out_ann, [ann, txts])
|
|
|
|
def putpy(self, ss, es, ann, data):
|
|
self.put(ss, es, self.out_python, [ann, data])
|
|
|
|
def putbin(self, ss, es, ann_class, data):
|
|
self.put(ss, es, self.out_binary, [ann_class, data])
|
|
|
|
def flush_word(self, bus_width):
|
|
if not self.word_items:
|
|
return
|
|
word_size = self.options['wordsize']
|
|
|
|
items = self.word_items
|
|
ss, es = items[0][0], items[-1][1]
|
|
items = [i[2] for i in items]
|
|
if self.options['endianness'] == 'big':
|
|
items.reverse()
|
|
word = sum([d << (i * bus_width) for i, d in enumerate(items)])
|
|
|
|
txts = [self.fmt_word.format(word)]
|
|
self.putg(ss, es, Ann.WORD, txts)
|
|
self.putpy(ss, es, 'WORD', (word, bus_width, word_size))
|
|
|
|
if len(items) != word_size:
|
|
txts = ['incomplete word size', 'word size', 'ws']
|
|
self.putg(ss, es, Ann.WARN, txts)
|
|
|
|
self.word_items.clear()
|
|
|
|
def queue_word(self, now, item, bus_width):
|
|
wordsize = self.options['wordsize']
|
|
if not wordsize:
|
|
return
|
|
|
|
# Terminate a previously seen item of a word first. Emit the
|
|
# word's annotation when the last item's end was seen.
|
|
if self.word_items:
|
|
ss, _, data = self.word_items[-1]
|
|
es = now
|
|
self.word_items[-1] = (ss, es, data)
|
|
if len(self.word_items) == wordsize:
|
|
self.flush_word(bus_width)
|
|
|
|
# Start tracking the currently seen item (yet unknown end time).
|
|
if item is not None:
|
|
pend = (now, None, item)
|
|
self.word_items.append(pend)
|
|
|
|
def handle_bits(self, now, item, bus_width):
|
|
|
|
# Optionally flush a previously started item.
|
|
if self.pend_item:
|
|
ss, _, data = self.pend_item
|
|
self.pend_item = None
|
|
es = now
|
|
txts = [self.fmt_item.format(data)]
|
|
self.putg(ss, es, Ann.ITEM, txts)
|
|
self.putpy(ss, es, 'ITEM', (data, bus_width))
|
|
self.putbin(ss, es, 0, data.to_bytes(1, byteorder='big'))
|
|
|
|
# Optionally queue the currently seen item.
|
|
if item is not None:
|
|
self.pend_item = (now, None, item)
|
|
|
|
# Pass the current item to the word accumulation logic.
|
|
self.queue_word(now, item, bus_width)
|
|
|
|
def decode(self):
|
|
# Determine which (optional) channels have input data. Insist in
|
|
# a non-empty input data set. Cope with sparse connection maps.
|
|
# Store enough state to later "compress" sampled input data.
|
|
data_indices = [
|
|
idx if self.has_channel(idx) else None
|
|
for idx in range(Pin.DATA_0, Pin.DATA_N)
|
|
]
|
|
has_data = [idx for idx in data_indices if idx is not None]
|
|
if not has_data:
|
|
raise ChannelError('Need at least one data channel.')
|
|
max_connected = max(has_data)
|
|
|
|
# Pre-determine which input data to strip off, the width of
|
|
# individual items and multiplexed words, as well as format
|
|
# strings here. This simplifies call sites which run in tight
|
|
# loops later.
|
|
upper_data_bound = max_connected + 1
|
|
num_item_bits = upper_data_bound - Pin.DATA_0
|
|
num_word_items = self.options['wordsize']
|
|
num_word_bits = num_item_bits * num_word_items
|
|
num_digits = (num_item_bits + 4 - 1) // 4
|
|
self.fmt_item = "{{:0{}x}}".format(num_digits)
|
|
num_digits = (num_word_bits + 4 - 1) // 4
|
|
self.fmt_word = "{{:0{}x}}".format(num_digits)
|
|
|
|
# Determine .wait() conditions, depending on the presence of a
|
|
# clock signal. Either inspect samples on the configured edge of
|
|
# the clock, or inspect samples upon ANY edge of ANY of the pins
|
|
# which provide input data.
|
|
conds = []
|
|
cond_idx_clock = None
|
|
cond_idx_data_0 = None
|
|
cond_idx_data_N = None
|
|
cond_idx_reset = None
|
|
has_clock = self.has_channel(Pin.CLOCK)
|
|
if has_clock:
|
|
cond_idx_clock = len(conds)
|
|
edge = {
|
|
'rising': 'r',
|
|
'falling': 'f',
|
|
'either': 'e',
|
|
}.get(self.options['clock_edge'])
|
|
conds.append({Pin.CLOCK: edge})
|
|
else:
|
|
cond_idx_data_0 = len(conds)
|
|
conds.extend([{idx: 'e'} for idx in has_data])
|
|
cond_idx_data_N = len(conds)
|
|
has_reset = self.has_channel(Pin.RESET)
|
|
if has_reset:
|
|
cond_idx_reset = len(conds)
|
|
conds.append({Pin.RESET: 'e'})
|
|
reset_active = {
|
|
'low-active': 0,
|
|
'high-active': 1,
|
|
}.get(self.options['reset_polarity'])
|
|
|
|
# Keep processing the input stream. Assume "always zero" for
|
|
# not-connected input lines. Pass data bits (all inputs except
|
|
# clock and reset) to the handle_bits() method. Handle reset
|
|
# edges first and data changes then, within the same iteration.
|
|
# This results in robust operation for low-oversampled input.
|
|
in_reset = False
|
|
while True:
|
|
try:
|
|
pins = self.wait(conds)
|
|
except EOFError as e:
|
|
break
|
|
clock_edge = cond_idx_clock is not None and self.matched[cond_idx_clock]
|
|
data_edge = cond_idx_data_0 is not None and [idx for idx in range(cond_idx_data_0, cond_idx_data_N) if self.matched[idx]]
|
|
reset_edge = cond_idx_reset is not None and self.matched[cond_idx_reset]
|
|
|
|
if reset_edge:
|
|
in_reset = pins[Pin.RESET] == reset_active
|
|
if in_reset:
|
|
self.handle_bits(self.samplenum, None, num_item_bits)
|
|
self.flush_word(num_item_bits)
|
|
if in_reset:
|
|
continue
|
|
|
|
if clock_edge or data_edge:
|
|
data_bits = [0 if idx is None else pins[idx] for idx in data_indices]
|
|
data_bits = data_bits[:num_item_bits]
|
|
item = bitpack(data_bits)
|
|
self.handle_bits(self.samplenum, item, num_item_bits)
|
|
|
|
self.handle_bits(self.samplenum, None, num_item_bits)
|
|
# TODO Determine whether a WARN annotation needs to get emitted.
|
|
# The decoder has not seen the end of the last accumulated item.
|
|
# Instead it just ran out of input data.
|