0
mirror of https://github.com/gusmanb/logicanalyzer.git synced 2025-02-05 18:17:44 +00:00
gusmanb-logicanalyzer/Software/decoders/parallel/pd.py
2024-10-12 12:08:11 +02:00

286 lines
10 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2013-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>, <pdata>
- 'ITEM', [<item>, <itembitsize>]
- 'WORD', [<word>, <wordbitsize>, <worditemcount>]
<item>:
- A single item (a number). It can be of arbitrary size. The max. number
of bits in this item is specified in <itembitsize>.
<itembitsize>:
- The size of an item (in bits). For a 4-bit parallel bus this is 4,
for a 16-bit parallel bus this is 16, and so on.
<word>:
- A single word (a number). It can be of arbitrary size. The max. number
of bits in this word is specified in <wordbitsize>. The (exact) number
of items in this word is specified in <worditemcount>.
<wordbitsize>:
- The size of a word (in bits). For a 2-item word with 8-bit items
<wordbitsize> is 16, for a 3-item word with 4-bit items <wordbitsize>
is 12, and so on.
<worditemcount>:
- The size of a word (in number of items). For a 4-item word (no matter
how many bits each item consists of) <worditemcount> is 4, for a 7-item
word <worditemcount> is 7, and so on.
'''
NUM_CHANNELS = 16
class Pin:
CLOCK = 0
DATA_0 = CLOCK + 1
DATA_N = DATA_0 + NUM_CHANNELS
# BEWARE! DATA_N points _beyond_ the data partition (Python range(3)
# semantics, useful to have to simplify other code locations).
RESET = DATA_N
class Ann:
ITEM, WORD, WARN = range(3)
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'parallel'
name = 'Parallel'
longname = 'Parallel sync bus'
desc = 'Generic parallel synchronous bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['parallel']
tags = ['Util']
optional_channels = tuple(
[{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] +
[
{'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i}
for i in range(NUM_CHANNELS)
] +
[{'id': 'rst', 'name': 'RST', 'desc': 'RESET line'}]
)
options = (
{'id': 'clock_edge', 'desc': 'Clock edge to sample on',
'default': 'rising', 'values': ('rising', 'falling', 'either')},
{'id': 'reset_polarity', 'desc': 'Reset line polarity',
'default': 'low-active', 'values': ('low-active', 'high-active')},
{'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)',
'default': 0},
{'id': 'endianness', 'desc': 'Data endianness',
'default': 'little', 'values': ('little', 'big')},
)
annotations = (
('item', 'Item'),
('word', 'Word'),
('warning', 'Warning'),
)
annotation_rows = (
('items', 'Items', (Ann.ITEM,)),
('words', 'Words', (Ann.WORD,)),
('warnings', 'Warnings', (Ann.WARN,)),
)
binary = (
('binary', 'Binary'),
)
def __init__(self):
self.reset()
def reset(self):
self.pend_item = None
self.word_items = []
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
def putg(self, ss, es, ann, txts):
self.put(ss, es, self.out_ann, [ann, txts])
def putpy(self, ss, es, ann, data):
self.put(ss, es, self.out_python, [ann, data])
def putbin(self, ss, es, ann_class, data):
self.put(ss, es, self.out_binary, [ann_class, data])
def flush_word(self, bus_width):
if not self.word_items:
return
word_size = self.options['wordsize']
items = self.word_items
ss, es = items[0][0], items[-1][1]
items = [i[2] for i in items]
if self.options['endianness'] == 'big':
items.reverse()
word = sum([d << (i * bus_width) for i, d in enumerate(items)])
txts = [self.fmt_word.format(word)]
self.putg(ss, es, Ann.WORD, txts)
self.putpy(ss, es, 'WORD', (word, bus_width, word_size))
if len(items) != word_size:
txts = ['incomplete word size', 'word size', 'ws']
self.putg(ss, es, Ann.WARN, txts)
self.word_items.clear()
def queue_word(self, now, item, bus_width):
wordsize = self.options['wordsize']
if not wordsize:
return
# Terminate a previously seen item of a word first. Emit the
# word's annotation when the last item's end was seen.
if self.word_items:
ss, _, data = self.word_items[-1]
es = now
self.word_items[-1] = (ss, es, data)
if len(self.word_items) == wordsize:
self.flush_word(bus_width)
# Start tracking the currently seen item (yet unknown end time).
if item is not None:
pend = (now, None, item)
self.word_items.append(pend)
def handle_bits(self, now, item, bus_width):
# Optionally flush a previously started item.
if self.pend_item:
ss, _, data = self.pend_item
self.pend_item = None
es = now
txts = [self.fmt_item.format(data)]
self.putg(ss, es, Ann.ITEM, txts)
self.putpy(ss, es, 'ITEM', (data, bus_width))
self.putbin(ss, es, 0, data.to_bytes(1, byteorder='big'))
# Optionally queue the currently seen item.
if item is not None:
self.pend_item = (now, None, item)
# Pass the current item to the word accumulation logic.
self.queue_word(now, item, bus_width)
def decode(self):
# Determine which (optional) channels have input data. Insist in
# a non-empty input data set. Cope with sparse connection maps.
# Store enough state to later "compress" sampled input data.
data_indices = [
idx if self.has_channel(idx) else None
for idx in range(Pin.DATA_0, Pin.DATA_N)
]
has_data = [idx for idx in data_indices if idx is not None]
if not has_data:
raise ChannelError('Need at least one data channel.')
max_connected = max(has_data)
# Pre-determine which input data to strip off, the width of
# individual items and multiplexed words, as well as format
# strings here. This simplifies call sites which run in tight
# loops later.
upper_data_bound = max_connected + 1
num_item_bits = upper_data_bound - Pin.DATA_0
num_word_items = self.options['wordsize']
num_word_bits = num_item_bits * num_word_items
num_digits = (num_item_bits + 4 - 1) // 4
self.fmt_item = "{{:0{}x}}".format(num_digits)
num_digits = (num_word_bits + 4 - 1) // 4
self.fmt_word = "{{:0{}x}}".format(num_digits)
# Determine .wait() conditions, depending on the presence of a
# clock signal. Either inspect samples on the configured edge of
# the clock, or inspect samples upon ANY edge of ANY of the pins
# which provide input data.
conds = []
cond_idx_clock = None
cond_idx_data_0 = None
cond_idx_data_N = None
cond_idx_reset = None
has_clock = self.has_channel(Pin.CLOCK)
if has_clock:
cond_idx_clock = len(conds)
edge = {
'rising': 'r',
'falling': 'f',
'either': 'e',
}.get(self.options['clock_edge'])
conds.append({Pin.CLOCK: edge})
else:
cond_idx_data_0 = len(conds)
conds.extend([{idx: 'e'} for idx in has_data])
cond_idx_data_N = len(conds)
has_reset = self.has_channel(Pin.RESET)
if has_reset:
cond_idx_reset = len(conds)
conds.append({Pin.RESET: 'e'})
reset_active = {
'low-active': 0,
'high-active': 1,
}.get(self.options['reset_polarity'])
# Keep processing the input stream. Assume "always zero" for
# not-connected input lines. Pass data bits (all inputs except
# clock and reset) to the handle_bits() method. Handle reset
# edges first and data changes then, within the same iteration.
# This results in robust operation for low-oversampled input.
in_reset = False
while True:
try:
pins = self.wait(conds)
except EOFError as e:
break
clock_edge = cond_idx_clock is not None and self.matched[cond_idx_clock]
data_edge = cond_idx_data_0 is not None and [idx for idx in range(cond_idx_data_0, cond_idx_data_N) if self.matched[idx]]
reset_edge = cond_idx_reset is not None and self.matched[cond_idx_reset]
if reset_edge:
in_reset = pins[Pin.RESET] == reset_active
if in_reset:
self.handle_bits(self.samplenum, None, num_item_bits)
self.flush_word(num_item_bits)
if in_reset:
continue
if clock_edge or data_edge:
data_bits = [0 if idx is None else pins[idx] for idx in data_indices]
data_bits = data_bits[:num_item_bits]
item = bitpack(data_bits)
self.handle_bits(self.samplenum, item, num_item_bits)
self.handle_bits(self.samplenum, None, num_item_bits)
# TODO Determine whether a WARN annotation needs to get emitted.
# The decoder has not seen the end of the last accumulated item.
# Instead it just ran out of input data.