0
mirror of https://github.com/gusmanb/logicanalyzer.git synced 2025-02-05 18:17:44 +00:00
gusmanb-logicanalyzer/Software/decoders/rgb_led_ws281x/pd.py
2024-10-12 12:08:11 +02:00

268 lines
11 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Vladimir Ermakov <vooon341@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# Implementor's notes on the wire format:
# - World Semi vendor, (Adafruit copy of the) datasheet
# https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
# - reset pulse is 50us (or more) of low pin level
# - 24bits per WS281x item, 3x 8bits, MSB first, GRB sequence,
# cascaded WS281x items, all "excess bits" are passed through
# - bit time starts with high period, continues with low period,
# high to low periods' ratio determines bit value, datasheet
# mentions 0.35us/0.8us for value 0, 0.7us/0.6us for value 1
# (huge 150ns tolerances, un-even 0/1 value length, hmm)
# - experience suggests the timing "is variable", rough estimation
# often is good enough, microcontroller firmware got away with
# four quanta per bit time, or even with three quanta (30%/60%),
# Adafruit learn article suggests 1.2us total and 0.4/0.8 or
# 0.8/0.4 high/low parts, four quanta are easier to handle when
# the bit stream is sent via SPI to avoid MCU bit banging and its
# inaccurate timing (when interrupts are used in the firmware)
# - RGBW datasheet (Adafruit copy) for SK6812
# https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf
# also 1.2us total, shared across 0.3/0.9 for 0, 0.6/0.6 for 1,
# 80us reset pulse, R8/G8/B8/W8 format per 32bits
# - WS2815, RGB LED, uses GRB wire format, 280us RESET pulse width
# - more vendors and models available and in popular use,
# suggests "one third" or "two thirds" ratio would be most robust,
# sample "a little before" the bit half? reset pulse width may need
# to become an option? matrices and/or fast refresh environments
# may want to experiment with back to back pixel streams
import sigrokdecode as srd
from common.srdhelper import bitpack_msb
class SamplerateError(Exception):
pass
class DecoderError(Exception):
pass
(
ANN_BIT, ANN_RESET, ANN_RGB,
ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,
) = range(7)
class Decoder(srd.Decoder):
api_version = 3
id = 'rgb_led_ws281x'
name = 'RGB LED (WS281x)'
longname = 'RGB LED string decoder (WS281x)'
desc = 'RGB LED string protocol (WS281x).'
license = 'gplv3+'
inputs = ['logic']
outputs = []
tags = ['Display', 'IC']
channels = (
{'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'},
)
annotations = (
('bit', 'Bit'),
('reset', 'RESET'),
('rgb', 'RGB'),
('r', 'R'),
('g', 'G'),
('b', 'B'),
('w', 'W'),
)
annotation_rows = (
('bits', 'Bits', (ANN_BIT, ANN_RESET,)),
('rgb-comps', 'RGB components', (ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,)),
('rgb-vals', 'RGB values', (ANN_RGB,)),
)
options = (
{'id': 'wireorder', 'desc': 'colour components order (wire)',
'default': 'GRB',
'values': ('BGR', 'BRG', 'GBR', 'GRB', 'RBG', 'RGB', 'RWBG', 'RGBW')},
{'id': 'textorder', 'desc': 'components output order (text)',
'default': 'RGB[W]', 'values': ('wire', 'RGB[W]', 'RGB', 'RGBW', 'RGWB')},
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def putg(self, ss, es, cls, text):
self.put(ss, es, self.out_ann, [cls, text])
def handle_bits(self):
if len(self.bits) < self.need_bits:
return
ss_packet, es_packet = self.bits[0][1], self.bits[-1][2]
r, g, b, w = 0, 0, 0, None
comps = []
for i, c in enumerate(self.wireformat):
first_idx, after_idx = 8 * i, 8 * i + 8
comp_bits = self.bits[first_idx:after_idx]
comp_ss, comp_es = comp_bits[0][1], comp_bits[-1][2]
comp_value = bitpack_msb(comp_bits, 0)
comp_text = '{:02x}'.format(comp_value)
comp_ann = {
'r': ANN_COMP_R, 'g': ANN_COMP_G,
'b': ANN_COMP_B, 'w': ANN_COMP_W,
}.get(c.lower(), None)
comp_item = (comp_ss, comp_es, comp_ann, comp_value, comp_text)
comps.append(comp_item)
if c.lower() == 'r':
r = comp_value
elif c.lower() == 'g':
g = comp_value
elif c.lower() == 'b':
b = comp_value
elif c.lower() == 'w':
w = comp_value
wt = '' if w is None else '{:02x}'.format(w)
if self.textformat == 'wire':
rgb_text = '#' + ''.join([c[-1] for c in comps])
else:
rgb_text = self.textformat.format(r = r, g = g, b = b, w = w, wt = wt)
for ss_comp, es_comp, cls_comp, value_comp, text_comp in comps:
self.putg(ss_comp, es_comp, cls_comp, [text_comp])
if rgb_text:
self.putg(ss_packet, es_packet, ANN_RGB, [rgb_text])
self.bits.clear()
def handle_bit(self, ss, es, value, ann_late = False):
if not ann_late:
text = ['{:d}'.format(value)]
self.putg(ss, es, ANN_BIT, text)
item = (value, ss, es)
self.bits.append(item)
self.handle_bits()
if ann_late:
text = ['{:d}'.format(value)]
self.putg(ss, es, ANN_BIT, text)
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
# Preprocess options here, to simplify logic which executes
# much later in loops while settings have the same values.
wireorder = self.options['wireorder'].lower()
self.wireformat = [c for c in wireorder if c in 'rgbw']
self.need_bits = len(self.wireformat) * 8
textorder = self.options['textorder'].lower()
if textorder == 'wire':
self.textformat = 'wire'
elif textorder == 'rgb[w]':
self.textformat = '#{r:02x}{g:02x}{b:02x}{wt:s}'
else:
self.textformat = {
# "Obvious" permutations of R/G/B.
'bgr': '#{b:02x}{g:02x}{r:02x}',
'brg': '#{b:02x}{r:02x}{g:02x}',
'gbr': '#{g:02x}{b:02x}{r:02x}',
'grb': '#{g:02x}{r:02x}{b:02x}',
'rbg': '#{r:02x}{b:02x}{g:02x}',
'rgb': '#{r:02x}{g:02x}{b:02x}',
# RGB plus White. Only one of them useful?
'rgbw': '#{r:02x}{g:02x}{b:02x}{w:02x}',
# Weird RGBW permutation for compatibility to test case.
# Neither used RGBW nor the 'wire' order. Obsolete now?
'rgwb': '#{r:02x}{g:02x}{w:02x}{b:02x}',
}.get(textorder, None)
if self.textformat is None:
raise DecoderError('Unsupported text output format.')
# Either check for edges which communicate bit values, or for
# long periods of idle level which represent a reset pulse.
# Track the left-most, right-most, and inner edge positions of
# a bit. The positive period's width determines the bit's value.
# Initially synchronize to the input stream by searching for a
# low period, which preceeds a data bit or starts a reset pulse.
# Don't annotate the very first reset pulse, but process it. We
# may not see the right-most edge of a data bit when reset is
# adjacent to that bit time.
cond_bit_starts = {0: 'r'}
cond_inbit_edge = {0: 'f'}
samples_625ns = int(self.samplerate * 625e-9)
samples_50us = round(self.samplerate * 50e-6)
cond_reset_pulse = {'skip': samples_50us + 1}
conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse]
ss_bit, inv_bit, es_bit = None, None, None
pin, = self.wait({0: 'l'})
inv_bit = self.samplenum
check_reset = False
while True:
pin, = self.wait(conds)
# Check RESET condition. Manufacturers may disagree on the
# minimal pulse width. 50us are recommended in datasheets,
# experiments suggest the limit is around 10us.
# When the RESET pulse is adjacent to the low phase of the
# last bit time, we have no appropriate condition for the
# bit time's end location. That's why this BIT's annotation
# is shorter (only spans the high phase), and the RESET
# annotation immediately follows (spans from the falling edge
# to the end of the minimum RESET pulse width).
if check_reset and self.matched[2]:
es_bit = inv_bit
ss_rst, es_rst = inv_bit, self.samplenum
if ss_bit and inv_bit and es_bit:
# Decode last bit value. Use the last processed bit's
# width for comparison when available. Fallback to an
# arbitrary threshold otherwise (which can result in
# false detection of value 1 for those captures where
# high and low pulses are of similar width).
duty = inv_bit - ss_bit
thres = samples_625ns
if self.bits:
period = self.bits[-1][2] - self.bits[-1][1]
thres = period * 0.5
bit_value = 1 if duty >= thres else 0
self.handle_bit(ss_bit, inv_bit, bit_value, True)
if ss_rst and es_rst:
text = ['RESET', 'RST', 'R']
self.putg(ss_rst, es_rst, ANN_RESET, text)
check_reset = False
self.bits.clear()
ss_bit, inv_bit, es_bit = None, None, None
# Rising edge starts a bit time. Falling edge ends its high
# period. Get the previous bit's duty cycle and thus its
# bit value when the next bit starts.
if self.matched[0]: # and pin:
check_reset = False
if ss_bit and inv_bit:
# Got a previous bit? Handle it.
es_bit = self.samplenum
period = es_bit - ss_bit
duty = inv_bit - ss_bit
# Ideal duty for T0H: 33%, T1H: 66%.
bit_value = 1 if (duty / period) > 0.5 else 0
self.handle_bit(ss_bit, es_bit, bit_value)
ss_bit, inv_bit, es_bit = self.samplenum, None, None
if self.matched[1]: # and not pin:
check_reset = True
inv_bit = self.samplenum