mirror of
https://github.com/gusmanb/logicanalyzer.git
synced 2025-02-05 18:17:44 +00:00
268 lines
11 KiB
Python
268 lines
11 KiB
Python
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2016 Vladimir Ermakov <vooon341@gmail.com>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 3 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
# Implementor's notes on the wire format:
|
|
# - World Semi vendor, (Adafruit copy of the) datasheet
|
|
# https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
|
|
# - reset pulse is 50us (or more) of low pin level
|
|
# - 24bits per WS281x item, 3x 8bits, MSB first, GRB sequence,
|
|
# cascaded WS281x items, all "excess bits" are passed through
|
|
# - bit time starts with high period, continues with low period,
|
|
# high to low periods' ratio determines bit value, datasheet
|
|
# mentions 0.35us/0.8us for value 0, 0.7us/0.6us for value 1
|
|
# (huge 150ns tolerances, un-even 0/1 value length, hmm)
|
|
# - experience suggests the timing "is variable", rough estimation
|
|
# often is good enough, microcontroller firmware got away with
|
|
# four quanta per bit time, or even with three quanta (30%/60%),
|
|
# Adafruit learn article suggests 1.2us total and 0.4/0.8 or
|
|
# 0.8/0.4 high/low parts, four quanta are easier to handle when
|
|
# the bit stream is sent via SPI to avoid MCU bit banging and its
|
|
# inaccurate timing (when interrupts are used in the firmware)
|
|
# - RGBW datasheet (Adafruit copy) for SK6812
|
|
# https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf
|
|
# also 1.2us total, shared across 0.3/0.9 for 0, 0.6/0.6 for 1,
|
|
# 80us reset pulse, R8/G8/B8/W8 format per 32bits
|
|
# - WS2815, RGB LED, uses GRB wire format, 280us RESET pulse width
|
|
# - more vendors and models available and in popular use,
|
|
# suggests "one third" or "two thirds" ratio would be most robust,
|
|
# sample "a little before" the bit half? reset pulse width may need
|
|
# to become an option? matrices and/or fast refresh environments
|
|
# may want to experiment with back to back pixel streams
|
|
|
|
import sigrokdecode as srd
|
|
from common.srdhelper import bitpack_msb
|
|
|
|
class SamplerateError(Exception):
|
|
pass
|
|
|
|
class DecoderError(Exception):
|
|
pass
|
|
|
|
(
|
|
ANN_BIT, ANN_RESET, ANN_RGB,
|
|
ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,
|
|
) = range(7)
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = 'rgb_led_ws281x'
|
|
name = 'RGB LED (WS281x)'
|
|
longname = 'RGB LED string decoder (WS281x)'
|
|
desc = 'RGB LED string protocol (WS281x).'
|
|
license = 'gplv3+'
|
|
inputs = ['logic']
|
|
outputs = []
|
|
tags = ['Display', 'IC']
|
|
channels = (
|
|
{'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'},
|
|
)
|
|
annotations = (
|
|
('bit', 'Bit'),
|
|
('reset', 'RESET'),
|
|
('rgb', 'RGB'),
|
|
('r', 'R'),
|
|
('g', 'G'),
|
|
('b', 'B'),
|
|
('w', 'W'),
|
|
)
|
|
annotation_rows = (
|
|
('bits', 'Bits', (ANN_BIT, ANN_RESET,)),
|
|
('rgb-comps', 'RGB components', (ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,)),
|
|
('rgb-vals', 'RGB values', (ANN_RGB,)),
|
|
)
|
|
options = (
|
|
{'id': 'wireorder', 'desc': 'colour components order (wire)',
|
|
'default': 'GRB',
|
|
'values': ('BGR', 'BRG', 'GBR', 'GRB', 'RBG', 'RGB', 'RWBG', 'RGBW')},
|
|
{'id': 'textorder', 'desc': 'components output order (text)',
|
|
'default': 'RGB[W]', 'values': ('wire', 'RGB[W]', 'RGB', 'RGBW', 'RGWB')},
|
|
)
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.samplerate = None
|
|
self.bits = []
|
|
|
|
def start(self):
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
|
|
def metadata(self, key, value):
|
|
if key == srd.SRD_CONF_SAMPLERATE:
|
|
self.samplerate = value
|
|
|
|
def putg(self, ss, es, cls, text):
|
|
self.put(ss, es, self.out_ann, [cls, text])
|
|
|
|
def handle_bits(self):
|
|
if len(self.bits) < self.need_bits:
|
|
return
|
|
ss_packet, es_packet = self.bits[0][1], self.bits[-1][2]
|
|
r, g, b, w = 0, 0, 0, None
|
|
comps = []
|
|
for i, c in enumerate(self.wireformat):
|
|
first_idx, after_idx = 8 * i, 8 * i + 8
|
|
comp_bits = self.bits[first_idx:after_idx]
|
|
comp_ss, comp_es = comp_bits[0][1], comp_bits[-1][2]
|
|
comp_value = bitpack_msb(comp_bits, 0)
|
|
comp_text = '{:02x}'.format(comp_value)
|
|
comp_ann = {
|
|
'r': ANN_COMP_R, 'g': ANN_COMP_G,
|
|
'b': ANN_COMP_B, 'w': ANN_COMP_W,
|
|
}.get(c.lower(), None)
|
|
comp_item = (comp_ss, comp_es, comp_ann, comp_value, comp_text)
|
|
comps.append(comp_item)
|
|
if c.lower() == 'r':
|
|
r = comp_value
|
|
elif c.lower() == 'g':
|
|
g = comp_value
|
|
elif c.lower() == 'b':
|
|
b = comp_value
|
|
elif c.lower() == 'w':
|
|
w = comp_value
|
|
wt = '' if w is None else '{:02x}'.format(w)
|
|
if self.textformat == 'wire':
|
|
rgb_text = '#' + ''.join([c[-1] for c in comps])
|
|
else:
|
|
rgb_text = self.textformat.format(r = r, g = g, b = b, w = w, wt = wt)
|
|
for ss_comp, es_comp, cls_comp, value_comp, text_comp in comps:
|
|
self.putg(ss_comp, es_comp, cls_comp, [text_comp])
|
|
if rgb_text:
|
|
self.putg(ss_packet, es_packet, ANN_RGB, [rgb_text])
|
|
self.bits.clear()
|
|
|
|
def handle_bit(self, ss, es, value, ann_late = False):
|
|
if not ann_late:
|
|
text = ['{:d}'.format(value)]
|
|
self.putg(ss, es, ANN_BIT, text)
|
|
item = (value, ss, es)
|
|
self.bits.append(item)
|
|
self.handle_bits()
|
|
if ann_late:
|
|
text = ['{:d}'.format(value)]
|
|
self.putg(ss, es, ANN_BIT, text)
|
|
|
|
def decode(self):
|
|
if not self.samplerate:
|
|
raise SamplerateError('Cannot decode without samplerate.')
|
|
|
|
# Preprocess options here, to simplify logic which executes
|
|
# much later in loops while settings have the same values.
|
|
wireorder = self.options['wireorder'].lower()
|
|
self.wireformat = [c for c in wireorder if c in 'rgbw']
|
|
self.need_bits = len(self.wireformat) * 8
|
|
textorder = self.options['textorder'].lower()
|
|
if textorder == 'wire':
|
|
self.textformat = 'wire'
|
|
elif textorder == 'rgb[w]':
|
|
self.textformat = '#{r:02x}{g:02x}{b:02x}{wt:s}'
|
|
else:
|
|
self.textformat = {
|
|
# "Obvious" permutations of R/G/B.
|
|
'bgr': '#{b:02x}{g:02x}{r:02x}',
|
|
'brg': '#{b:02x}{r:02x}{g:02x}',
|
|
'gbr': '#{g:02x}{b:02x}{r:02x}',
|
|
'grb': '#{g:02x}{r:02x}{b:02x}',
|
|
'rbg': '#{r:02x}{b:02x}{g:02x}',
|
|
'rgb': '#{r:02x}{g:02x}{b:02x}',
|
|
# RGB plus White. Only one of them useful?
|
|
'rgbw': '#{r:02x}{g:02x}{b:02x}{w:02x}',
|
|
# Weird RGBW permutation for compatibility to test case.
|
|
# Neither used RGBW nor the 'wire' order. Obsolete now?
|
|
'rgwb': '#{r:02x}{g:02x}{w:02x}{b:02x}',
|
|
}.get(textorder, None)
|
|
if self.textformat is None:
|
|
raise DecoderError('Unsupported text output format.')
|
|
|
|
# Either check for edges which communicate bit values, or for
|
|
# long periods of idle level which represent a reset pulse.
|
|
# Track the left-most, right-most, and inner edge positions of
|
|
# a bit. The positive period's width determines the bit's value.
|
|
# Initially synchronize to the input stream by searching for a
|
|
# low period, which preceeds a data bit or starts a reset pulse.
|
|
# Don't annotate the very first reset pulse, but process it. We
|
|
# may not see the right-most edge of a data bit when reset is
|
|
# adjacent to that bit time.
|
|
cond_bit_starts = {0: 'r'}
|
|
cond_inbit_edge = {0: 'f'}
|
|
samples_625ns = int(self.samplerate * 625e-9)
|
|
samples_50us = round(self.samplerate * 50e-6)
|
|
cond_reset_pulse = {'skip': samples_50us + 1}
|
|
conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse]
|
|
ss_bit, inv_bit, es_bit = None, None, None
|
|
pin, = self.wait({0: 'l'})
|
|
inv_bit = self.samplenum
|
|
check_reset = False
|
|
while True:
|
|
pin, = self.wait(conds)
|
|
|
|
# Check RESET condition. Manufacturers may disagree on the
|
|
# minimal pulse width. 50us are recommended in datasheets,
|
|
# experiments suggest the limit is around 10us.
|
|
# When the RESET pulse is adjacent to the low phase of the
|
|
# last bit time, we have no appropriate condition for the
|
|
# bit time's end location. That's why this BIT's annotation
|
|
# is shorter (only spans the high phase), and the RESET
|
|
# annotation immediately follows (spans from the falling edge
|
|
# to the end of the minimum RESET pulse width).
|
|
if check_reset and self.matched[2]:
|
|
es_bit = inv_bit
|
|
ss_rst, es_rst = inv_bit, self.samplenum
|
|
|
|
if ss_bit and inv_bit and es_bit:
|
|
# Decode last bit value. Use the last processed bit's
|
|
# width for comparison when available. Fallback to an
|
|
# arbitrary threshold otherwise (which can result in
|
|
# false detection of value 1 for those captures where
|
|
# high and low pulses are of similar width).
|
|
duty = inv_bit - ss_bit
|
|
thres = samples_625ns
|
|
if self.bits:
|
|
period = self.bits[-1][2] - self.bits[-1][1]
|
|
thres = period * 0.5
|
|
bit_value = 1 if duty >= thres else 0
|
|
self.handle_bit(ss_bit, inv_bit, bit_value, True)
|
|
|
|
if ss_rst and es_rst:
|
|
text = ['RESET', 'RST', 'R']
|
|
self.putg(ss_rst, es_rst, ANN_RESET, text)
|
|
check_reset = False
|
|
|
|
self.bits.clear()
|
|
ss_bit, inv_bit, es_bit = None, None, None
|
|
|
|
# Rising edge starts a bit time. Falling edge ends its high
|
|
# period. Get the previous bit's duty cycle and thus its
|
|
# bit value when the next bit starts.
|
|
if self.matched[0]: # and pin:
|
|
check_reset = False
|
|
if ss_bit and inv_bit:
|
|
# Got a previous bit? Handle it.
|
|
es_bit = self.samplenum
|
|
period = es_bit - ss_bit
|
|
duty = inv_bit - ss_bit
|
|
# Ideal duty for T0H: 33%, T1H: 66%.
|
|
bit_value = 1 if (duty / period) > 0.5 else 0
|
|
self.handle_bit(ss_bit, es_bit, bit_value)
|
|
ss_bit, inv_bit, es_bit = self.samplenum, None, None
|
|
if self.matched[1]: # and not pin:
|
|
check_reset = True
|
|
inv_bit = self.samplenum
|