0
mirror of https://github.com/gusmanb/logicanalyzer.git synced 2025-02-05 18:17:44 +00:00
gusmanb-logicanalyzer/Software/decoders/uart/pd.py
2024-10-12 12:08:11 +02:00

636 lines
26 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
from math import floor, ceil
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <rxtx>, <pdata>]
This is the list of <ptype>s and their respective <pdata> values:
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'DATA': This is always a tuple containing two items:
- 1st item: the (integer) value of the UART data. Valid values
range from 0 to 511 (as the data can be up to 9 bits in size).
- 2nd item: the list of individual data bits and their ss/es numbers.
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
the expected parity value, the second is the actual parity value.
- 'BREAK': The data is always 0.
- 'FRAME': The data is always a tuple containing two items: The (integer)
value of the UART data, and a boolean which reflects the validity of the
UART frame.
- 'IDLE': The data is always 0.
The <rxtx> field is 0 for RX packets, 1 for TX packets.
'''
# Used for differentiating between the two data directions.
RX = 0
TX = 1
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# 'none' is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, data_bits):
if parity_type == 'ignore':
return True
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == 'zero':
return parity_bit == 0
elif parity_type == 'one':
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
ones = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == 'odd':
return (ones % 2) == 1
elif parity_type == 'even':
return (ones % 2) == 0
class SamplerateError(Exception):
pass
class ChannelError(Exception):
pass
class Ann:
RX_DATA, TX_DATA, RX_START, TX_START, RX_PARITY_OK, TX_PARITY_OK, \
RX_PARITY_ERR, TX_PARITY_ERR, RX_STOP, TX_STOP, RX_WARN, TX_WARN, \
RX_DATA_BIT, TX_DATA_BIT, RX_BREAK, TX_BREAK, RX_PACKET, TX_PACKET = \
range(18)
class Bin:
RX, TX, RXTX = range(3)
class Decoder(srd.Decoder):
api_version = 3
id = 'uart'
name = 'UART'
longname = 'Universal Asynchronous Receiver/Transmitter'
desc = 'Asynchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
tags = ['Embedded/industrial']
optional_channels = (
# Allow specifying only one of the signals, e.g. if only one data
# direction exists (or is relevant).
{'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
{'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
)
options = (
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
{'id': 'data_bits', 'desc': 'Data bits', 'default': 8,
'values': (5, 6, 7, 8, 9)},
{'id': 'parity', 'desc': 'Parity', 'default': 'none',
'values': ('none', 'odd', 'even', 'zero', 'one', 'ignore')},
{'id': 'stop_bits', 'desc': 'Stop bits', 'default': 1.0,
'values': (0.0, 0.5, 1.0, 1.5, 2.0)},
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
'values': ('lsb-first', 'msb-first')},
{'id': 'format', 'desc': 'Data format', 'default': 'hex',
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
{'id': 'invert_rx', 'desc': 'Invert RX', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'invert_tx', 'desc': 'Invert TX', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'sample_point', 'desc': 'Sample point (%)', 'default': 50},
{'id': 'rx_packet_delim', 'desc': 'RX packet delimiter (decimal)',
'default': -1},
{'id': 'tx_packet_delim', 'desc': 'TX packet delimiter (decimal)',
'default': -1},
{'id': 'rx_packet_len', 'desc': 'RX packet length', 'default': -1},
{'id': 'tx_packet_len', 'desc': 'TX packet length', 'default': -1},
)
annotations = (
('rx-data', 'RX data'),
('tx-data', 'TX data'),
('rx-start', 'RX start bit'),
('tx-start', 'TX start bit'),
('rx-parity-ok', 'RX parity OK bit'),
('tx-parity-ok', 'TX parity OK bit'),
('rx-parity-err', 'RX parity error bit'),
('tx-parity-err', 'TX parity error bit'),
('rx-stop', 'RX stop bit'),
('tx-stop', 'TX stop bit'),
('rx-warning', 'RX warning'),
('tx-warning', 'TX warning'),
('rx-data-bit', 'RX data bit'),
('tx-data-bit', 'TX data bit'),
('rx-break', 'RX break'),
('tx-break', 'TX break'),
('rx-packet', 'RX packet'),
('tx-packet', 'TX packet'),
)
annotation_rows = (
('rx-data-bits', 'RX bits', (Ann.RX_DATA_BIT,)),
('rx-data-vals', 'RX data', (Ann.RX_DATA, Ann.RX_START, Ann.RX_PARITY_OK, Ann.RX_PARITY_ERR, Ann.RX_STOP)),
('rx-warnings', 'RX warnings', (Ann.RX_WARN,)),
('rx-breaks', 'RX breaks', (Ann.RX_BREAK,)),
('rx-packets', 'RX packets', (Ann.RX_PACKET,)),
('tx-data-bits', 'TX bits', (Ann.TX_DATA_BIT,)),
('tx-data-vals', 'TX data', (Ann.TX_DATA, Ann.TX_START, Ann.TX_PARITY_OK, Ann.TX_PARITY_ERR, Ann.TX_STOP)),
('tx-warnings', 'TX warnings', (Ann.TX_WARN,)),
('tx-breaks', 'TX breaks', (Ann.TX_BREAK,)),
('tx-packets', 'TX packets', (Ann.TX_PACKET,)),
)
binary = (
('rx', 'RX dump'),
('tx', 'TX dump'),
('rxtx', 'RX/TX dump'),
)
idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
def putx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
def putx_packet(self, rxtx, data):
s, halfbit = self.ss_packet[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
def putpx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
def putg(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
def putp(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
def putgse(self, ss, es, data):
self.put(ss, es, self.out_ann, data)
def putpse(self, ss, es, data):
self.put(ss, es, self.out_python, data)
def putbin(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.frame_start = [-1, -1]
self.frame_valid = [None, None]
self.cur_frame_bit = [None, None]
self.startbit = [-1, -1]
self.cur_data_bit = [0, 0]
self.datavalue = [0, 0]
self.paritybit = [-1, -1]
self.stopbits = [[], []]
self.startsample = [-1, -1]
self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
self.databits = [[], []]
self.break_start = [None, None]
self.packet_cache = [[], []]
self.ss_packet, self.es_packet = [None, None], [None, None]
self.idle_start = [None, None]
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.bw = (self.options['data_bits'] + 7) // 8
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
def get_sample_point(self, rxtx, bitnum):
# Determine absolute sample number of a bit slot's sample point.
# Counts for UART bits start from 0 (0 = start bit, 1..x = data,
# x+1 = parity bit (if used) or the first stop bit, and so on).
# Accept a position in the range of 1-99% of the full bit width.
# Assume 50% for invalid input specs for backwards compatibility.
perc = self.options['sample_point'] or 50
if not perc or perc not in range(1, 100):
perc = 50
perc /= 100.0
bitpos = (self.bit_width - 1) * perc
bitpos += self.frame_start[rxtx]
bitpos += bitnum * self.bit_width
return bitpos
def wait_for_start_bit(self, rxtx, signal):
# Save the sample number where the start bit begins.
self.frame_start[rxtx] = self.samplenum
self.frame_valid[rxtx] = True
self.cur_frame_bit[rxtx] = 0
self.advance_state(rxtx, signal)
def get_start_bit(self, rxtx, signal):
self.startbit[rxtx] = signal
self.cur_frame_bit[rxtx] += 1
# The startbit must be 0. If not, we report an error and wait
# for the next start bit (assuming this one was spurious).
if self.startbit[rxtx] != 0:
self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']])
self.frame_valid[rxtx] = False
es = self.samplenum + ceil(self.bit_width / 2.0)
self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
(self.datavalue[rxtx], self.frame_valid[rxtx])])
self.advance_state(rxtx, signal, fatal = True, idle = es)
return
# Reset internal state for the pending UART frame.
self.cur_data_bit[rxtx] = 0
self.datavalue[rxtx] = 0
self.paritybit[rxtx] = -1
self.stopbits[rxtx].clear()
self.startsample[rxtx] = -1
self.databits[rxtx].clear()
self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([Ann.RX_START + rxtx, ['Start bit', 'Start', 'S']])
self.advance_state(rxtx, signal)
def handle_packet(self, rxtx):
d = 'rx' if (rxtx == RX) else 'tx'
delim = self.options[d + '_packet_delim']
plen = self.options[d + '_packet_len']
if delim == -1 and plen == -1:
return
# Cache data values until we see the delimiter and/or the specified
# packet length has been reached (whichever happens first).
if len(self.packet_cache[rxtx]) == 0:
self.ss_packet[rxtx] = self.startsample[rxtx]
self.packet_cache[rxtx].append(self.datavalue[rxtx])
if self.datavalue[rxtx] == delim or len(self.packet_cache[rxtx]) == plen:
self.es_packet[rxtx] = self.samplenum
s = ''
for b in self.packet_cache[rxtx]:
s += self.format_value(b)
if self.options['format'] != 'ascii':
s += ' '
if self.options['format'] != 'ascii' and s[-1] == ' ':
s = s[:-1] # Drop trailing space.
self.putx_packet(rxtx, [Ann.RX_PACKET + rxtx, [s]])
self.packet_cache[rxtx] = []
def get_data_bits(self, rxtx, signal):
# Save the sample number of the middle of the first data bit.
if self.startsample[rxtx] == -1:
self.startsample[rxtx] = self.samplenum
self.putg([Ann.RX_DATA_BIT + rxtx, ['%d' % signal]])
# Store individual data bits and their start/end samplenumbers.
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
self.cur_frame_bit[rxtx] += 1
# Return here, unless we already received all data bits.
self.cur_data_bit[rxtx] += 1
if self.cur_data_bit[rxtx] < self.options['data_bits']:
return
# Convert accumulated data bits to a data value.
bits = [b[0] for b in self.databits[rxtx]]
if self.options['bit_order'] == 'msb-first':
bits.reverse()
self.datavalue[rxtx] = bitpack(bits)
self.putpx(rxtx, ['DATA', rxtx,
(self.datavalue[rxtx], self.databits[rxtx])])
b = self.datavalue[rxtx]
formatted = self.format_value(b)
if formatted is not None:
self.putx(rxtx, [rxtx, [formatted]])
bdata = b.to_bytes(self.bw, byteorder='big')
self.putbin(rxtx, [Bin.RX + rxtx, bdata])
self.putbin(rxtx, [Bin.RXTX, bdata])
self.handle_packet(rxtx)
self.databits[rxtx] = []
self.advance_state(rxtx, signal)
def format_value(self, v):
# Format value 'v' according to configured options.
# Reflects the user selected kind of representation, as well as
# the number of data bits in the UART frames.
fmt, bits = self.options['format'], self.options['data_bits']
# Assume "is printable" for values from 32 to including 126,
# below 32 is "control" and thus not printable, above 127 is
# "not ASCII" in its strict sense, 127 (DEL) is not printable,
# fall back to hex representation for non-printables.
if fmt == 'ascii':
if v in range(32, 126 + 1):
return chr(v)
hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
return hexfmt.format(v)
# Mere number to text conversion without prefix and padding
# for the "decimal" output format.
if fmt == 'dec':
return "{:d}".format(v)
# Padding with leading zeroes for hex/oct/bin formats, but
# without a prefix for density -- since the format is user
# specified, there is no ambiguity.
if fmt == 'hex':
digits = (bits + 4 - 1) // 4
fmtchar = "X"
elif fmt == 'oct':
digits = (bits + 3 - 1) // 3
fmtchar = "o"
elif fmt == 'bin':
digits = bits
fmtchar = "b"
else:
fmtchar = None
if fmtchar is not None:
fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
return fmt.format(v)
return None
def get_parity_bit(self, rxtx, signal):
self.paritybit[rxtx] = signal
self.cur_frame_bit[rxtx] += 1
if parity_ok(self.options['parity'], self.paritybit[rxtx],
self.datavalue[rxtx], self.options['data_bits']):
self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
self.putg([Ann.RX_PARITY_OK + rxtx, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Return expected/actual parity values.
self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
self.putg([Ann.RX_PARITY_ERR + rxtx, ['Parity error', 'Parity err', 'PE']])
self.frame_valid[rxtx] = False
self.advance_state(rxtx, signal)
def get_stop_bits(self, rxtx, signal):
self.stopbits[rxtx].append(signal)
self.cur_frame_bit[rxtx] += 1
# Stop bits must be 1. If not, we report an error.
if signal != 1:
self.putp(['INVALID STOPBIT', rxtx, signal])
self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']])
self.frame_valid[rxtx] = False
self.putp(['STOPBIT', rxtx, signal])
self.putg([Ann.RX_STOP + rxtx, ['Stop bit', 'Stop', 'T']])
# Postprocess the UART frame after all STOP bits were seen.
if len(self.stopbits[rxtx]) < self.options['stop_bits']:
return
self.advance_state(rxtx, signal)
def advance_state(self, rxtx, signal = None, fatal = False, idle = None):
# Advances the protocol decoder's internal state for all regular
# UART frame inspection. Deals with either edges, sample points,
# or other .wait() conditions. Also gracefully handles extreme
# undersampling. Each turn takes one .wait() call which in turn
# corresponds to at least one sample. That is why as many state
# transitions are done here as required within a single call.
frame_end = self.frame_start[rxtx] + self.frame_len_sample_count
if idle is not None:
# When requested by the caller, start another (potential)
# IDLE period after the caller specified position.
self.idle_start[rxtx] = idle
if fatal:
# When requested by the caller, don't advance to the next
# UART frame's field, but to the start of the next START bit
# instead.
self.state[rxtx] = 'WAIT FOR START BIT'
return
# Advance to the next UART frame's field that we expect. Cope
# with absence of optional fields. Force scan for next IDLE
# after the (optional) STOP bit field, so that callers need
# not deal with optional field presence. Also handles the cases
# where the decoder navigates to edges which are not strictly
# a field's sampling point.
if self.state[rxtx] == 'WAIT FOR START BIT':
self.state[rxtx] = 'GET START BIT'
return
if self.state[rxtx] == 'GET START BIT':
self.state[rxtx] = 'GET DATA BITS'
return
if self.state[rxtx] == 'GET DATA BITS':
self.state[rxtx] = 'GET PARITY BIT'
if self.options['parity'] != 'none':
return
# FALLTHROUGH
if self.state[rxtx] == 'GET PARITY BIT':
self.state[rxtx] = 'GET STOP BITS'
if self.options['stop_bits']:
return
# FALLTHROUGH
if self.state[rxtx] == 'GET STOP BITS':
# Postprocess the previously received UART frame. Advance
# the read position to after the frame's last bit time. So
# that the start of the next START bit won't fall into the
# end of the previously received UART frame. This improves
# robustness in the presence of glitchy input data.
ss = self.frame_start[rxtx]
es = self.samplenum + ceil(self.bit_width / 2.0)
self.handle_frame(rxtx, ss, es)
self.state[rxtx] = 'WAIT FOR START BIT'
self.idle_start[rxtx] = frame_end
return
# Unhandled state, actually a programming error. Emit diagnostics?
self.state[rxtx] = 'WAIT FOR START BIT'
def handle_frame(self, rxtx, ss, es):
# Pass the complete UART frame to upper layers.
self.putpse(ss, es, ['FRAME', rxtx,
(self.datavalue[rxtx], self.frame_valid[rxtx])])
def handle_idle(self, rxtx, ss, es):
self.putpse(ss, es, ['IDLE', rxtx, 0])
def handle_break(self, rxtx, ss, es):
self.putpse(ss, es, ['BREAK', rxtx, 0])
self.putgse(ss, es, [Ann.RX_BREAK + rxtx,
['Break condition', 'Break', 'Brk', 'B']])
self.state[rxtx] = 'WAIT FOR START BIT'
def get_wait_cond(self, rxtx, inv):
# Return condititions that are suitable for Decoder.wait(). Those
# conditions either match the falling edge of the START bit, or
# the sample point of the next bit time.
state = self.state[rxtx]
if state == 'WAIT FOR START BIT':
return {rxtx: 'r' if inv else 'f'}
if state in ('GET START BIT', 'GET DATA BITS',
'GET PARITY BIT', 'GET STOP BITS'):
bitnum = self.cur_frame_bit[rxtx]
# TODO: Currently does not support half STOP bits.
want_num = ceil(self.get_sample_point(rxtx, bitnum))
return {'skip': want_num - self.samplenum}
def get_idle_cond(self, rxtx, inv):
# Return a condition that corresponds to the (expected) end of
# the next frame, assuming that it will be an "idle frame"
# (constant high input level for the frame's length).
if self.idle_start[rxtx] is None:
return None
end_of_frame = self.idle_start[rxtx] + self.frame_len_sample_count
if end_of_frame < self.samplenum:
return None
return {'skip': end_of_frame - self.samplenum}
def inspect_sample(self, rxtx, signal, inv):
# Inspect a sample returned by .wait() for the specified UART line.
if inv:
signal = not signal
state = self.state[rxtx]
if state == 'WAIT FOR START BIT':
self.wait_for_start_bit(rxtx, signal)
elif state == 'GET START BIT':
self.get_start_bit(rxtx, signal)
elif state == 'GET DATA BITS':
self.get_data_bits(rxtx, signal)
elif state == 'GET PARITY BIT':
self.get_parity_bit(rxtx, signal)
elif state == 'GET STOP BITS':
self.get_stop_bits(rxtx, signal)
def inspect_edge(self, rxtx, signal, inv):
# Inspect edges, independently from traffic, to detect break conditions.
if inv:
signal = not signal
if not signal:
# Signal went low. Start another interval.
self.break_start[rxtx] = self.samplenum
return
# Signal went high. Was there an extended period with low signal?
if self.break_start[rxtx] is None:
return
diff = self.samplenum - self.break_start[rxtx]
if diff >= self.break_min_sample_count:
ss, es = self.frame_start[rxtx], self.samplenum
self.handle_break(rxtx, ss, es)
self.break_start[rxtx] = None
def inspect_idle(self, rxtx, signal, inv):
# Check each edge and each period of stable input (either level).
# Can derive the "idle frame period has passed" condition.
if inv:
signal = not signal
if not signal:
# Low input, cease inspection.
self.idle_start[rxtx] = None
return
# High input, either just reached, or still stable.
if self.idle_start[rxtx] is None:
self.idle_start[rxtx] = self.samplenum
diff = self.samplenum - self.idle_start[rxtx]
if diff < self.frame_len_sample_count:
return
ss, es = self.idle_start[rxtx], self.samplenum
self.handle_idle(rxtx, ss, es)
self.idle_start[rxtx] = es
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
has_pin = [self.has_channel(ch) for ch in (RX, TX)]
if not True in has_pin:
raise ChannelError('Need at least one of TX or RX pins.')
opt = self.options
inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
cond_data_idx = [None] * len(has_pin)
# Determine the number of samples for a complete frame's time span.
# A period of low signal (at least) that long is a break condition.
frame_samples = 1 # START
frame_samples += self.options['data_bits']
frame_samples += 0 if self.options['parity'] == 'none' else 1
frame_samples += self.options['stop_bits']
frame_samples *= self.bit_width
self.frame_len_sample_count = ceil(frame_samples)
self.break_min_sample_count = self.frame_len_sample_count
cond_edge_idx = [None] * len(has_pin)
cond_idle_idx = [None] * len(has_pin)
while True:
conds = []
if has_pin[RX]:
cond_data_idx[RX] = len(conds)
conds.append(self.get_wait_cond(RX, inv[RX]))
cond_edge_idx[RX] = len(conds)
conds.append({RX: 'e'})
cond_idle_idx[RX] = None
idle_cond = self.get_idle_cond(RX, inv[RX])
if idle_cond:
cond_idle_idx[RX] = len(conds)
conds.append(idle_cond)
if has_pin[TX]:
cond_data_idx[TX] = len(conds)
conds.append(self.get_wait_cond(TX, inv[TX]))
cond_edge_idx[TX] = len(conds)
conds.append({TX: 'e'})
cond_idle_idx[TX] = None
idle_cond = self.get_idle_cond(TX, inv[TX])
if idle_cond:
cond_idle_idx[TX] = len(conds)
conds.append(idle_cond)
(rx, tx) = self.wait(conds)
if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]:
self.inspect_sample(RX, rx, inv[RX])
if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]:
self.inspect_edge(RX, rx, inv[RX])
self.inspect_idle(RX, rx, inv[RX])
if cond_idle_idx[RX] is not None and self.matched[cond_idle_idx[RX]]:
self.inspect_idle(RX, rx, inv[RX])
if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]:
self.inspect_sample(TX, tx, inv[TX])
if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]:
self.inspect_edge(TX, tx, inv[TX])
self.inspect_idle(TX, tx, inv[TX])
if cond_idle_idx[TX] is not None and self.matched[cond_idle_idx[TX]]:
self.inspect_idle(TX, tx, inv[TX])