0
mirror of https://gitlab.com/hyperglitch/jellyfish.git synced 2025-04-01 01:16:54 +00:00
jellyfish-powersupply/fw/Core/Src/main.c
2025-03-09 00:59:24 +01:00

1348 lines
36 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "ST7789/st7789.h"
#include "images/splash.h"
#include <stdio.h>
#include <stdbool.h>
#include "../../USB_DEVICE/App/usbd_cdc_if.h"
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
CRC_HandleTypeDef hcrc;
I2C_HandleTypeDef hi2c3;
QSPI_HandleTypeDef hqspi;
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi2;
DMA_HandleTypeDef hdma_spi2_tx;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart1;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 1024 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* USER CODE BEGIN PV */
uint32_t adc_buff[9] = {0}; // ADC buffer
uint8_t rx_buff[2]; // UART RX buffer
// I2C peripheral addresses
const uint8_t i2c_addr_aux_pot = 0x2c;
const uint8_t i2c_addr_pd_trig1 = 0x29;
const uint8_t i2c_addr_pd_trig2 = 0x28;
const uint8_t i2c_addr_iset_dac1= 0x60;
const uint8_t i2c_addr_iset_dac2= 0x61;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CRC_Init(void);
static void MX_I2C3_Init(void);
static void MX_SPI1_Init(void);
static void MX_SPI2_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM4_Init(void);
static void MX_QUADSPI_Init(void);
void StartDefaultTask(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// printf support
int _write(int file, char *ptr, int len){
(void)file;
//HAL_UART_Transmit_IT(&huart1, (uint8_t*)ptr, (uint16_t)len);
//CDC_Transmit_HS((uint8_t*)ptr, len);
HAL_UART_Transmit(&huart1, (uint8_t*)ptr, (uint16_t)len, 100);
return len;
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){
if(huart->Instance == USART1){
// Code to handle the received data
//handle_uart(RxBuffer[0]);
HAL_UART_Receive_IT(&huart1, rx_buff, 1);
printf("%c\n", rx_buff[0]); // echo
// FIXME: set flag to process later
}
}
typedef struct{
uint32_t enc_sw;
uint32_t enc_sw_evt_id;
uint32_t btn;
uint32_t btn_evt_id;
int32_t encoder;
} jf_ui_t;
static jf_ui_t user_input_state = {0};
static uint32_t _enc_state[2] = {0};
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){
static uint32_t last_change = 0;
static uint32_t enc_state_last_change = 0;
static int32_t state_last = 0;
static int32_t direction_count = 0;
bool change_enc[2] = {false};
uint32_t enc[2] = {0};
uint32_t enc_last_change[2] = {0};
const uint32_t enc_debounce_ms = 10;
switch(GPIO_Pin){
case BUTTON_Pin:
const uint32_t btn = HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin);
if(btn!=user_input_state.btn){
user_input_state.btn = btn;
user_input_state.btn_evt_id++;
}
return;
case ENCODER_SW_Pin:
const uint32_t enc_sw = HAL_GPIO_ReadPin(ENCODER_SW_GPIO_Port, ENCODER_SW_Pin);
if(enc_sw!=user_input_state.enc_sw){
user_input_state.enc_sw = enc_sw;
user_input_state.enc_sw_evt_id++;
}
return;
/*
case ENCODER_A_Pin:
enc[0] = HAL_GPIO_ReadPin(ENCODER_A_GPIO_Port, ENCODER_A_Pin);
if(enc[0]!=_enc_state[0] && HAL_GetTick()-enc_last_change[0]>enc_debounce_ms){
change_enc[0] = true;
enc_last_change[0] = HAL_GetTick(); // debounce
}
else {
enc[0] = _enc_state[0];
}
break;
case ENCODER_B_Pin:
enc[1] = HAL_GPIO_ReadPin(ENCODER_B_GPIO_Port, ENCODER_B_Pin);
if(enc[1]!=_enc_state[1] && HAL_GetTick()-enc_last_change[1]>enc_debounce_ms){
change_enc[1] = true;
enc_last_change[1] = HAL_GetTick();
}
else {
enc[1] = _enc_state[1];
}
break;
*/
}
if(GPIO_Pin!=ENCODER_A_Pin && GPIO_Pin!=ENCODER_B_Pin) return;
const uint32_t tm = HAL_GetTick();
if((tm-last_change) < enc_debounce_ms) return;
last_change = tm;
const bool A = HAL_GPIO_ReadPin(ENCODER_A_GPIO_Port, ENCODER_A_Pin);
const bool B = HAL_GPIO_ReadPin(ENCODER_B_GPIO_Port, ENCODER_B_Pin);
int32_t state = 0;
if(GPIO_Pin==ENCODER_A_Pin) {
if(B==0) state--;
else state++;
}
else if(GPIO_Pin==ENCODER_B_Pin) {
if(A==1) state--;
else state++;
}
if(state==0) return;
if(tm-enc_state_last_change > 50) { // slow down the changes
// prevent abrupt direction change
if(state==state_last) {
enc_state_last_change = tm;
user_input_state.encoder += state;
}
state_last = state;
}
/*
if(change_enc){
// code change: ... -> 3 -> 2 -> 0 -> 1 -> ...
const uint8_t code_old = (_enc_state[1]<<1) + _enc_state[0];
const uint8_t code_new = (enc[1]<<1) + enc[0];
if((code_old==3 && code_new==2) || (code_old==2 && code_new==0) || (code_old==0 && code_new==1) || (code_old==1 && code_new==3)){
user_input_state.encoder++;
}
else{
user_input_state.encoder--;
}
_enc_state[0] = enc[0];
_enc_state[1] = enc[1];
}
*/
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_CRC_Init();
MX_I2C3_Init();
MX_SPI1_Init();
MX_SPI2_Init();
MX_USART1_UART_Init();
MX_ADC1_Init();
MX_TIM4_Init();
MX_QUADSPI_Init();
/* USER CODE BEGIN 2 */
printf("hello from JellyfishOPP\r\n");
printf("compiled on %s %s\r\n", __DATE__, __TIME__);
HAL_GPIO_WritePin(DISP_BLK_GPIO_Port, DISP_BLK_Pin, 1);
ST7789_Init();
//ST7789_Test();
HAL_Delay(500);
uint16_t back = 0x0000;
for(int i=0; i<8; i++){
back += 0x1111;
ST7789_Fill_Color(back);
HAL_Delay(10);
}
ST7789_Fill_Color(WHITE);
HAL_Delay(300);
ST7789_DrawImage(0, 0, 280, 240, (uint16_t *)img_splash);
//HAL_Delay(3000);
// enable ideal diode controllers
HAL_GPIO_WritePin(ENABLE_USB1_GPIO_Port, ENABLE_USB1_Pin, 1);
HAL_GPIO_WritePin(ENABLE_DC_GPIO_Port, ENABLE_DC_Pin, 1);
HAL_UART_Receive_IT(&huart1, rx_buff, 1);
// initialize UI controls
HAL_GPIO_EXTI_Callback(BUTTON_Pin);
HAL_GPIO_EXTI_Callback(ENCODER_SW_Pin);
HAL_GPIO_EXTI_Callback(ENCODER_A_Pin);
HAL_GPIO_EXTI_Callback(ENCODER_B_Pin);
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1) {
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 12;
RCC_OscInitStruct.PLL.PLLN = 180;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Activate the Over-Drive mode
*/
if (HAL_PWREx_EnableOverDrive() != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
HAL_RCC_MCOConfig(RCC_MCO2, RCC_MCO2SOURCE_HSE, RCC_MCODIV_1);
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 9;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_14;
sConfig.Rank = 6;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_15;
sConfig.Rank = 7;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.Rank = 8;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.Rank = 9;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief I2C3 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C3_Init(void)
{
/* USER CODE BEGIN I2C3_Init 0 */
/* USER CODE END I2C3_Init 0 */
/* USER CODE BEGIN I2C3_Init 1 */
/* USER CODE END I2C3_Init 1 */
hi2c3.Instance = I2C3;
hi2c3.Init.ClockSpeed = 50000;
hi2c3.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c3.Init.OwnAddress1 = 0;
hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3.Init.OwnAddress2 = 0;
hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C3_Init 2 */
/* USER CODE END I2C3_Init 2 */
}
/**
* @brief QUADSPI Initialization Function
* @param None
* @retval None
*/
static void MX_QUADSPI_Init(void)
{
/* USER CODE BEGIN QUADSPI_Init 0 */
/* USER CODE END QUADSPI_Init 0 */
/* USER CODE BEGIN QUADSPI_Init 1 */
/* USER CODE END QUADSPI_Init 1 */
/* QUADSPI parameter configuration*/
hqspi.Instance = QUADSPI;
hqspi.Init.ClockPrescaler = 9;
hqspi.Init.FifoThreshold = 1;
hqspi.Init.SampleShifting = QSPI_SAMPLE_SHIFTING_NONE;
hqspi.Init.FlashSize = 20;
hqspi.Init.ChipSelectHighTime = QSPI_CS_HIGH_TIME_1_CYCLE;
hqspi.Init.ClockMode = QSPI_CLOCK_MODE_0;
hqspi.Init.DualFlash = QSPI_DUALFLASH_ENABLE;
if (HAL_QSPI_Init(&hqspi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN QUADSPI_Init 2 */
/* USER CODE END QUADSPI_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief SPI2 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_HIGH;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_HARD_OUTPUT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 1024000;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_8;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream4_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream4_IRQn);
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, DISP_BLK_Pin|DISP_RES_Pin|DISP_DC_Pin|ENABLE_PREREG_Pin
|ENABLE_EXT_IN_Pin|ENABLE_AUX_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, ENABLE_USB1_Pin|ENABLE_ISO_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : DISP_BLK_Pin DISP_RES_Pin DISP_DC_Pin ENABLE_PREREG_Pin
ENABLE_EXT_IN_Pin ENABLE_AUX_Pin */
GPIO_InitStruct.Pin = DISP_BLK_Pin|DISP_RES_Pin|DISP_DC_Pin|ENABLE_PREREG_Pin
|ENABLE_EXT_IN_Pin|ENABLE_AUX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : BUTTON_Pin */
GPIO_InitStruct.Pin = BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BUTTON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ENCODER_A_Pin ENCODER_B_Pin ENCODER_SW_Pin */
GPIO_InitStruct.Pin = ENCODER_A_Pin|ENCODER_B_Pin|ENCODER_SW_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pin : PC9 */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : ENABLE_DC_Pin */
GPIO_InitStruct.Pin = ENABLE_DC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(ENABLE_DC_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ENABLE_USB1_Pin ENABLE_ISO_Pin */
GPIO_InitStruct.Pin = ENABLE_USB1_Pin|ENABLE_ISO_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
bool vaux_set_digipot(uint8_t val){
uint8_t wiper_data[2] = {(val>>8)&0x01, val&0xff};
const HAL_StatusTypeDef st = HAL_I2C_Master_Transmit(&hi2c3, i2c_addr_aux_pot<<1, wiper_data, 2, 300);
return st==HAL_OK;
}
typedef enum{
DAC_ISET_PLUS,
DAC_ISET_MINUS
} iset_dac_idx_t;
bool iset_dac_write(iset_dac_idx_t dac_idx, uint16_t val){
const uint8_t addr = dac_idx==DAC_ISET_PLUS ? i2c_addr_iset_dac1 : i2c_addr_iset_dac2;
const uint8_t MCP4725_DAC_WRITE_CMD = 0x40;
const uint8_t MCP4725_DAC_EEPROM_WRITE_CMD = 0x60;
uint8_t data[3] = {MCP4725_DAC_WRITE_CMD, (uint8_t)(val>>4), (val<<4)&0xff};
const HAL_StatusTypeDef st = HAL_I2C_Master_Transmit(&hi2c3, addr<<1, data, 3, 300);
return st==HAL_OK;
}
HAL_StatusTypeDef QSPI_Write(uint8_t* data, uint8_t command, uint32_t address, uint16_t dataSize) {
QSPI_CommandTypeDef sCommand;
// Configure the command for the write operation
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.Instruction = command; //0x02; // Page Program instruction (example)
sCommand.AddressMode = QSPI_ADDRESS_4_LINES;
sCommand.AddressSize = QSPI_ADDRESS_24_BITS;
sCommand.Address = address;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DataMode = QSPI_DATA_4_LINES;
sCommand.NbData = dataSize;
sCommand.DummyCycles = 2;
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
// Send the command
if (HAL_QSPI_Command(&hqspi, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) {
return HAL_ERROR;
}
// Transmit the data
if (HAL_QSPI_Transmit(&hqspi, data, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) {
return HAL_ERROR;
}
return HAL_OK;
}
HAL_StatusTypeDef QSPI_Read(uint8_t* data, uint8_t command,uint32_t address, uint16_t dataSize) {
QSPI_CommandTypeDef sCommand;
// Configure the command for the read operation
sCommand.InstructionMode = QSPI_INSTRUCTION_1_LINE;
sCommand.Instruction = command; //0x03; // Read Data instruction (example)
sCommand.AddressMode = QSPI_ADDRESS_4_LINES;
sCommand.AddressSize = QSPI_ADDRESS_24_BITS;
sCommand.Address = address;
sCommand.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
sCommand.DataMode = QSPI_DATA_4_LINES;
sCommand.NbData = dataSize;
sCommand.DummyCycles = 2; // QSPI_DUMMY_CYCLES_READ
sCommand.DdrMode = QSPI_DDR_MODE_DISABLE;
sCommand.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
sCommand.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
// Send the command
if (HAL_QSPI_Command(&hqspi, &sCommand, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) {
return HAL_ERROR;
}
// Receive the data
if (HAL_QSPI_Receive(&hqspi, data, HAL_QPSI_TIMEOUT_DEFAULT_VALUE) != HAL_OK) {
return HAL_ERROR;
}
return HAL_OK;
}
typedef enum {
LED_BLINK,
ADC_GET,
DAC_SET,
ISET_DAC,
RANGE,
UI_FUNC_END, // FIXME: must be last
} ui_function_t;
const char ui_func_labels[13][13] = {
"LED ",
"ADC_GET",
"DAC ",
"ISET ",
"RANGE ",
};
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* init code for USB_DEVICE */
MX_USB_DEVICE_Init();
/* USER CODE BEGIN 5 */
/*
printf("I2c scan\r\n");
osDelay(50);
for(int i=0; i<0x80; i++) {
if(i%16==0){
printf("\r\n 0x%02X: ", i);
}
uint8_t ret = HAL_I2C_IsDeviceReady(&hi2c3, (uint16_t)(i<<1), 10, 100);
if (ret != HAL_OK) // No ACK Received At That Address
{
printf(" -- ");
}
else if(ret == HAL_OK)
{
printf(" 0x%02X", i);
}
else{
printf(" ?? ");
}
osDelay(5);
}
printf("\r\n");
*/
/*
while(true){
uint8_t rx_buff[2];
HAL_I2C_Mem_Read(&hi2c3, 0x60<<1, 1, 1, rx_buff, 1, 300);
printf("r: %x\r\n", rx_buff[0]);
osDelay(500);
}
*/
const uint32_t ch[3] = {TIM_CHANNEL_1, TIM_CHANNEL_2, TIM_CHANNEL_3};
int curr = 0;
int32_t p = htim4.Init.Period/4;
for(int i=0; i<3; i++){
__HAL_TIM_SET_COMPARE(&htim4, ch[i], 0);
HAL_TIM_PWM_Start(&htim4, ch[i]);
}
uint32_t last_adc_trigger = 0;
uint32_t btn_last = 1;
uint32_t enc_sw_last = 1;
int32_t enc_last = user_input_state.encoder;
ui_function_t ui_func = LED_BLINK;
uint16_t iset_dac = 0;
bool refresh_display = true;
uint32_t spi_addr = 0x0001;
HAL_GPIO_WritePin(ENABLE_PREREG_GPIO_Port, ENABLE_PREREG_Pin, 1);
ST7789_WriteString(5, 20, " PREREG ENABLED ", Font_16x26, RED, WHITE);
iset_dac_write(DAC_ISET_PLUS, 100);
iset_dac_write(DAC_ISET_MINUS, 100);
// set BK2 IO pins as input (E7, E8, E9, E10)
// this is to avoid the possible conflict with FPGA pins set to output
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
//HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/* Infinite loop */
for(;;){
/*
if(HAL_GetTick()-last_adc_trigger > 1000){
last_adc_trigger = HAL_GetTick();
// print last values
printf("-----------------------\r\n");
const char labels[13][13] = {
"VSENSE_DC ",
"VSENSE_USB0",
"VSENSE_USB1",
"NTC1 ",
"NTC2 ",
"AUX_ISENSE ",
"AUX_VSENSE ",
"TEMPERATURE",
"VREFINT ",
};
for(int i=0; i<9; i++){
printf(" %s: %lu\r\n", labels[i], adc_buff[i]);
}
HAL_ADC_Start_DMA(&hadc1, adc_buff, 9);
}
*/
/*
// sawtooth
iset_dac_write(DAC_ISET_PLUS, iset_dac);
iset_dac_write(DAC_ISET_MINUS, 4095-iset_dac);
iset_dac+=10;
if(iset_dac>4095) iset_dac = 0;
*/
__HAL_TIM_SET_COMPARE(&htim4, ch[curr], p);
p-=100;
if(p<=0){
p = htim4.Init.Period/4;
curr++;
if(curr==3) curr = 0;
}
osDelay(10);
const uint32_t enc_sw = user_input_state.enc_sw;
if(enc_sw!=enc_sw_last) {
enc_sw_last = enc_sw;
if(!enc_sw) {
const uint8_t spi_data[16] = {
0xc3, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
int32_t d = user_input_state.encoder;
if(d>99) d = 99;
if(d<0) d = 0;
if(ui_func==LED_BLINK) {
const uint8_t cmd = 0x05;
const uint32_t addr = d*2;
QSPI_Write(spi_data, cmd, addr, 1);
printf("send LED_BLINK command %d with addr %d\r\n", cmd, addr);
}
else if(ui_func==DAC_SET) {
const uint8_t cmd = 0x06;
const uint32_t addr = d*64;
QSPI_Write(spi_data, cmd, addr, 1);
printf("send DAC_SET command %d with addr %d\r\n", cmd, addr);
}
else if(ui_func==ISET_DAC) {
const uint16_t val = d*10;
iset_dac_write(DAC_ISET_PLUS, val);
iset_dac_write(DAC_ISET_MINUS, val);
printf("send ISET_DAC command value %d\r\n", val);
}
else if(ui_func==RANGE) {
if(d>6) d = 6;
const int8_t cmd = 0x04;
const uint32_t addr = d*2;
QSPI_Write(spi_data, cmd, addr, 1);
printf("send RANGE command %d with addr %d\r\n", cmd, addr);
}
else if(ui_func==ADC_GET) {
const uint32_t addr = d*2;
QSPI_Read(spi_data, 0x01, addr, 16);
printf("qspi read %x %x %x %x %x %x %x %x\r\n",
spi_data[0], spi_data[1], spi_data[2], spi_data[3], spi_data[4], spi_data[5], spi_data[6], spi_data[7]);
}
}
}
const uint32_t btn = user_input_state.btn;
if(btn!=btn_last) {
btn_last = btn;
if(!btn) {
ui_func++;
if(ui_func==UI_FUNC_END) ui_func = LED_BLINK;
printf("ui_func: %s\r\n", ui_func_labels[ui_func]);
refresh_display = true;
// toggle ext in
//HAL_GPIO_TogglePin(ENABLE_EXT_IN_GPIO_Port, ENABLE_EXT_IN_Pin);
}
}
/*
if(btn!=btn_last){
btn_last = btn;
//printf("button state: %lu\r\n", btn);
if(btn==0){
// toggle AUX supply
const uint32_t st = HAL_GPIO_ReadPin(ENABLE_PREREG_GPIO_Port, ENABLE_PREREG_Pin);
if(st){
printf("Disabling PREREG\r\n");
HAL_GPIO_WritePin(ENABLE_PREREG_GPIO_Port, ENABLE_PREREG_Pin, 0);
}
else{
printf("Enabling PREREG\r\n");
HAL_GPIO_WritePin(ENABLE_PREREG_GPIO_Port, ENABLE_PREREG_Pin, 1);
}
}
}
*/
/*
const uint32_t enc_sw = user_input_state.enc_sw;
if(enc_sw!=enc_sw_last){
enc_sw_last = enc_sw;
//printf("enc_sw state: %lu\r\n", enc_sw);
if(enc_sw==0){
// toggle AUX supply
const uint32_t st = HAL_GPIO_ReadPin(ENABLE_AUX_GPIO_Port, ENABLE_AUX_Pin);
if(st){
printf("Disabling AUX supply\r\n");
HAL_GPIO_WritePin(ENABLE_AUX_GPIO_Port, ENABLE_AUX_Pin, 0);
}
else{
printf("Enabling AUX supply\r\n");
HAL_GPIO_WritePin(ENABLE_AUX_GPIO_Port, ENABLE_AUX_Pin, 1);
}
}
}
*/
int32_t enc = user_input_state.encoder;
if(enc!=enc_last) {
enc_last = enc;
refresh_display = true;
// set digipot wiper
if(enc>=0 && enc<=255){
/*
vaux_set_digipot(enc);
iset_dac_write(DAC_ISET_PLUS, enc*16);
iset_dac_write(DAC_ISET_MINUS, enc*16);
printf("wiper set to %ld\r\n", enc);
*/
}
else{
printf("encoder: %ld\r\n", enc);
}
}
if(refresh_display){
refresh_display = false;
char buf[10];
ST7789_WriteString(110, 150, HAL_GPIO_ReadPin(ENABLE_EXT_IN_GPIO_Port, ENABLE_EXT_IN_Pin) ? "EXT IN":" ", Font_16x26, GREEN, WHITE);
ST7789_WriteString(60, 175, ui_func_labels[ui_func], Font_16x26, BLUE, WHITE);
ST7789_WriteString(60, 200, "enc:", Font_16x26, BLACK, WHITE);
ST7789_WriteString(130, 200, " ", Font_16x26, BLACK, WHITE); // clear
ST7789_WriteString(130, 200, itoa(enc, buf, 10), Font_16x26, BLACK, WHITE);
ST7789_WriteString(130, 200, " ", Font_16x26, BLACK, WHITE); // clear
ST7789_WriteString(130, 200, itoa(enc, buf, 10), Font_16x26, BLACK, WHITE);
}
/*
if(btn) {
uint8_t spi_data[16] = {0};
QSPI_Read(spi_data, 0xAD54, sizeof(spi_data));
}
else {
const uint8_t spi_data[16] = {
0xc3, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
QSPI_Write(spi_data, 0xAD54, sizeof(spi_data));
}
*/
}
/* USER CODE END 5 */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM1 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM1) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */