kicad/common/plotters/GERBER_plotter.cpp

2078 lines
71 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2019 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2022-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file GERBER_plotter.cpp
* @brief specialized plotter for GERBER files format
*/
#include <string_utils.h>
#include <convert_basic_shapes_to_polygon.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <trigo.h>
#include <wx/log.h>
#include <cstdio>
#include <build_version.h>
#include <plotters/plotter_gerber.h>
#include <plotters/gbr_plotter_aperture_macros.h>
#include <gbr_metadata.h>
// if GBR_USE_MACROS is defined, pads having a shape that is not a Gerber primitive
// will use a macro when possible
// Old code will be removed only after many tests
//
// Note also: setting m_gerberDisableApertMacros to true disable all aperture macros
// in Gerber files
//
#define GBR_USE_MACROS_FOR_CHAMFERED_ROUND_RECT
#define GBR_USE_MACROS_FOR_CHAMFERED_RECT
#define GBR_USE_MACROS_FOR_ROUNDRECT
#define GBR_USE_MACROS_FOR_TRAPEZOID
#define GBR_USE_MACROS_FOR_ROTATED_OVAL
#define GBR_USE_MACROS_FOR_ROTATED_RECT
#define GBR_USE_MACROS_FOR_CUSTOM_PAD
// max count of corners to create a aperture macro for a custom shape.
// provided just in case a aperture macro type free polygon creates issues
// when the number of corners is too high.
// (1 corner = up to 24 chars)
// Gerber doc say max corners 5000. We use a slightly smaller value.
// if a custom shape needs more than GBR_MACRO_FOR_CUSTOM_PAD_MAX_CORNER_COUNT, it
// will be plot using a region.
#define GBR_MACRO_FOR_CUSTOM_PAD_MAX_CORNER_COUNT 4990
#define AM_FREEPOLY_BASENAME "FreePoly"
// A helper function to compare 2 polygons: polygons are similar if they have the same
// number of vertices and each vertex coordinate are similar, i.e. if the difference
// between coordinates is small ( <= margin to accept rounding issues coming from polygon
// geometric transforms like rotation
static bool polyCompare( const std::vector<VECTOR2I>& aPolygon,
const std::vector<VECTOR2I>& aTestPolygon )
{
// fast test: polygon sizes must be the same:
if( aTestPolygon.size() != aPolygon.size() )
return false;
const int margin = 2;
for( size_t jj = 0; jj < aPolygon.size(); jj++ )
{
if( std::abs( aPolygon[jj].x - aTestPolygon[jj].x ) > margin ||
std::abs( aPolygon[jj].y - aTestPolygon[jj].y ) > margin )
return false;
}
return true;
}
GERBER_PLOTTER::GERBER_PLOTTER()
{
workFile = nullptr;
finalFile = nullptr;
m_currentApertureIdx = -1;
m_apertureAttribute = 0;
// number of digits after the point (number of digits of the mantissa
// Be careful: the Gerber coordinates are stored in an integer
// so 6 digits (inches) or 5 digits (mm) is a good value
// To avoid overflow, 7 digits (inches) or 6 digits is a max.
// with lower values than 6 digits (inches) or 5 digits (mm),
// Creating self-intersecting polygons from non-intersecting polygons
// happen easily.
m_gerberUnitInch = false;
m_gerberUnitFmt = 6;
m_useX2format = true;
m_useNetAttributes = true;
m_gerberDisableApertMacros = false;
m_hasApertureRoundRect = false; // true is at least one round rect aperture is in use
m_hasApertureRotOval = false; // true is at least one oval rotated aperture is in use
m_hasApertureRotRect = false; // true is at least one rect. rotated aperture is in use
m_hasApertureOutline4P = false; // true is at least one rotated rect or trapezoid pad
// aperture is in use
m_hasApertureChamferedRect = false; // true is at least one chamfered rect
// (no rounded corner) is in use
}
void GERBER_PLOTTER::SetViewport( const VECTOR2I& aOffset, double aIusPerDecimil,
double aScale, bool aMirror )
{
wxASSERT( aMirror == false );
m_plotMirror = false;
m_plotOffset = aOffset;
wxASSERT( aScale == 1 ); // aScale parameter is not used in Gerber
m_plotScale = 1; // Plot scale is *always* 1.0
m_IUsPerDecimil = aIusPerDecimil;
// gives now a default value to iuPerDeviceUnit (because the units of the caller is now known)
// which could be modified later by calling SetGerberCoordinatesFormat()
m_iuPerDeviceUnit = pow( 10.0, m_gerberUnitFmt ) / ( m_IUsPerDecimil * 10000.0 );
// We don't handle the filmbox, and it's more useful to keep the
// origin at the origin
m_paperSize.x = 0;
m_paperSize.y = 0;
}
void GERBER_PLOTTER::SetGerberCoordinatesFormat( int aResolution, bool aUseInches )
{
m_gerberUnitInch = aUseInches;
m_gerberUnitFmt = aResolution;
m_iuPerDeviceUnit = pow( 10.0, m_gerberUnitFmt ) / ( m_IUsPerDecimil * 10000.0 );
if( ! m_gerberUnitInch )
m_iuPerDeviceUnit *= 25.4; // gerber output in mm
}
void GERBER_PLOTTER::emitDcode( const VECTOR2D& pt, int dcode )
{
fprintf( m_outputFile, "X%dY%dD%02d*\n", KiROUND( pt.x ), KiROUND( pt.y ), dcode );
}
void GERBER_PLOTTER::ClearAllAttributes()
{
// Remove all attributes from object attributes dictionary (TO. and TA commands)
if( m_useX2format )
fputs( "%TD*%\n", m_outputFile );
else
fputs( "G04 #@! TD*\n", m_outputFile );
m_objectAttributesDictionary.clear();
}
void GERBER_PLOTTER::clearNetAttribute()
{
// disable a Gerber net attribute (exists only in X2 with net attributes mode).
if( m_objectAttributesDictionary.empty() ) // No net attribute or not X2 mode
return;
// Remove all net attributes from object attributes dictionary
if( m_useX2format )
fputs( "%TD*%\n", m_outputFile );
else
fputs( "G04 #@! TD*\n", m_outputFile );
m_objectAttributesDictionary.clear();
}
void GERBER_PLOTTER::StartBlock( void* aData )
{
// Currently, it is the same as EndBlock(): clear all aperture net attributes
EndBlock( aData );
}
void GERBER_PLOTTER::EndBlock( void* aData )
{
// Remove all net attributes from object attributes dictionary
clearNetAttribute();
}
void GERBER_PLOTTER::formatNetAttribute( GBR_NETLIST_METADATA* aData )
{
// print a Gerber net attribute record.
// it is added to the object attributes dictionary
// On file, only modified or new attributes are printed.
if( aData == nullptr )
return;
if( !m_useNetAttributes )
return;
bool useX1StructuredComment = !m_useX2format;
bool clearDict;
std::string short_attribute_string;
if( !FormatNetAttribute( short_attribute_string, m_objectAttributesDictionary,
aData, clearDict, useX1StructuredComment ) )
return;
if( clearDict )
clearNetAttribute();
if( !short_attribute_string.empty() )
fputs( short_attribute_string.c_str(), m_outputFile );
if( m_useX2format && !aData->m_ExtraData.IsEmpty() )
{
std::string extra_data = TO_UTF8( aData->m_ExtraData );
fputs( extra_data.c_str(), m_outputFile );
}
}
bool GERBER_PLOTTER::StartPlot( const wxString& aPageNumber )
{
m_hasApertureRoundRect = false; // true is at least one round rect aperture is in use
m_hasApertureRotOval = false; // true is at least one oval rotated aperture is in use
m_hasApertureRotRect = false; // true is at least one rect. rotated aperture is in use
m_hasApertureOutline4P = false; // true is at least one rotated rect/trapezoid aperture
// is in use
m_hasApertureChamferedRect = false; // true is at least one chamfered rect is in use
m_am_freepoly_list.ClearList();
wxASSERT( m_outputFile );
finalFile = m_outputFile; // the actual gerber file will be created later
// Create a temp file in system temp to avoid potential network share buffer issues for
// the final read and save.
m_workFilename = wxFileName::CreateTempFileName( "" );
workFile = wxFopen( m_workFilename, wxT( "wt" ) );
m_outputFile = workFile;
wxASSERT( m_outputFile );
if( m_outputFile == nullptr )
return false;
for( unsigned ii = 0; ii < m_headerExtraLines.GetCount(); ii++ )
{
if( ! m_headerExtraLines[ii].IsEmpty() )
fprintf( m_outputFile, "%s\n", TO_UTF8( m_headerExtraLines[ii] ) );
}
// Set coordinate format to 3.6 or 4.5 absolute, leading zero omitted
// the number of digits for the integer part of coordinates is needed
// in gerber format, but is not very important when omitting leading zeros
// It is fixed here to 3 (inch) or 4 (mm), but is not actually used
int leadingDigitCount = m_gerberUnitInch ? 3 : 4;
fprintf( m_outputFile, "%%FSLAX%d%dY%d%d*%%\n",
leadingDigitCount, m_gerberUnitFmt,
leadingDigitCount, m_gerberUnitFmt );
fprintf( m_outputFile,
"G04 Gerber Fmt %d.%d, Leading zero omitted, Abs format (unit %s)*\n",
leadingDigitCount, m_gerberUnitFmt,
m_gerberUnitInch ? "inch" : "mm" );
wxString Title = m_creator + wxT( " " ) + GetBuildVersion();
// In gerber files, ASCII7 chars only are allowed.
// So use a ISO date format (using a space as separator between date and time),
// not a localized date format
wxDateTime date = wxDateTime::Now();
fprintf( m_outputFile, "G04 Created by KiCad (%s) date %s*\n",
TO_UTF8( Title ), TO_UTF8( date.FormatISOCombined( ' ') ) );
/* Mass parameter: unit = INCHES/MM */
if( m_gerberUnitInch )
fputs( "%MOIN*%\n", m_outputFile );
else
fputs( "%MOMM*%\n", m_outputFile );
// Be sure the usual dark polarity is selected:
fputs( "%LPD*%\n", m_outputFile );
// Set initial interpolation mode: always G01 (linear):
fputs( "G01*\n", m_outputFile );
// Add aperture list start point
fputs( "G04 APERTURE LIST*\n", m_outputFile );
// Give a minimal value to the default pen size, used to plot items in sketch mode
if( m_renderSettings )
{
const int pen_min = 0.1 * m_IUsPerDecimil * 10000 / 25.4; // for min width = 0.1 mm
m_renderSettings->SetDefaultPenWidth( std::max( m_renderSettings->GetDefaultPenWidth(),
pen_min ) );
}
return true;
}
bool GERBER_PLOTTER::EndPlot()
{
char line[1024];
wxASSERT( m_outputFile );
/* Outfile is actually a temporary file i.e. workFile */
fputs( "M02*\n", m_outputFile );
fflush( m_outputFile );
fclose( workFile );
workFile = wxFopen( m_workFilename, wxT( "rt" ));
wxASSERT( workFile );
m_outputFile = finalFile;
// Placement of apertures in RS274X
while( fgets( line, 1024, workFile ) )
{
fputs( line, m_outputFile );
char* substr = strtok( line, "\n\r" );
if( substr && strcmp( substr, "G04 APERTURE LIST*" ) == 0 )
{
// Add aperture list macro:
if( m_hasApertureRoundRect || m_hasApertureRotOval ||
m_hasApertureOutline4P || m_hasApertureRotRect ||
m_hasApertureChamferedRect || m_am_freepoly_list.AmCount() )
{
fputs( "G04 Aperture macros list*\n", m_outputFile );
if( m_hasApertureRoundRect )
fputs( APER_MACRO_ROUNDRECT_HEADER, m_outputFile );
if( m_hasApertureRotOval )
fputs( APER_MACRO_SHAPE_OVAL_HEADER, m_outputFile );
if( m_hasApertureRotRect )
fputs( APER_MACRO_ROT_RECT_HEADER, m_outputFile );
if( m_hasApertureOutline4P )
fputs( APER_MACRO_OUTLINE4P_HEADER, m_outputFile );
if( m_hasApertureChamferedRect )
{
fputs( APER_MACRO_OUTLINE5P_HEADER, m_outputFile );
fputs( APER_MACRO_OUTLINE6P_HEADER, m_outputFile );
fputs( APER_MACRO_OUTLINE7P_HEADER, m_outputFile );
fputs( APER_MACRO_OUTLINE8P_HEADER, m_outputFile );
}
if( m_am_freepoly_list.AmCount() )
{
// aperture sizes are in inch or mm, regardless the
// coordinates format
double fscale = 0.0001 * m_plotScale / m_IUsPerDecimil; // inches
if(! m_gerberUnitInch )
fscale *= 25.4; // size in mm
m_am_freepoly_list.Format( m_outputFile, fscale );
}
fputs( "G04 Aperture macros list end*\n", m_outputFile );
}
writeApertureList();
fputs( "G04 APERTURE END LIST*\n", m_outputFile );
}
}
fclose( workFile );
fclose( finalFile );
::wxRemoveFile( m_workFilename );
m_outputFile = nullptr;
return true;
}
void GERBER_PLOTTER::SetCurrentLineWidth( int aWidth, void* aData )
{
if( aWidth == DO_NOT_SET_LINE_WIDTH )
return;
else if( aWidth == USE_DEFAULT_LINE_WIDTH )
aWidth = m_renderSettings->GetDefaultPenWidth();
wxASSERT_MSG( aWidth >= 0, "Plotter called to set negative pen width" );
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
int aperture_attribute = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( VECTOR2I( aWidth, aWidth ), 0, ANGLE_0, APERTURE::AT_PLOTTING,
aperture_attribute );
m_currentPenWidth = aWidth;
}
int GERBER_PLOTTER::GetOrCreateAperture( const VECTOR2I& aSize, int aRadius,
const EDA_ANGLE& aRotation, APERTURE::APERTURE_TYPE aType,
int aApertureAttribute )
{
int last_D_code = 9;
// Search an existing aperture
for( int idx = 0; idx < (int)m_apertures.size(); ++idx )
{
APERTURE* tool = &m_apertures[idx];
last_D_code = tool->m_DCode;
if( (tool->m_Type == aType) && (tool->m_Size == aSize) &&
(tool->m_Radius == aRadius) && (tool->m_Rotation == aRotation) &&
(tool->m_ApertureAttribute == aApertureAttribute) )
return idx;
}
// Allocate a new aperture
APERTURE new_tool;
new_tool.m_Size = aSize;
new_tool.m_Type = aType;
new_tool.m_Radius = aRadius;
new_tool.m_Rotation = aRotation;
new_tool.m_DCode = last_D_code + 1;
new_tool.m_ApertureAttribute = aApertureAttribute;
m_apertures.push_back( new_tool );
return m_apertures.size() - 1;
}
int GERBER_PLOTTER::GetOrCreateAperture( const std::vector<VECTOR2I>& aCorners,
const EDA_ANGLE& aRotation, APERTURE::APERTURE_TYPE aType,
int aApertureAttribute )
{
int last_D_code = 9;
// For APERTURE::AM_FREE_POLYGON aperture macros, we need to create the macro
// on the fly, because due to the fact the vertex count is not a constant we
// cannot create a static definition.
if( APERTURE::AM_FREE_POLYGON == aType )
{
int idx = m_am_freepoly_list.FindAm( aCorners );
if( idx < 0 )
m_am_freepoly_list.Append( aCorners );
}
// Search an existing aperture
for( int idx = 0; idx < (int)m_apertures.size(); ++idx )
{
APERTURE* tool = &m_apertures[idx];
last_D_code = tool->m_DCode;
if( (tool->m_Type == aType) &&
(tool->m_Corners.size() == aCorners.size() ) &&
(tool->m_Rotation == aRotation) &&
(tool->m_ApertureAttribute == aApertureAttribute) )
{
// A candidate is found. the corner lists must be similar
bool is_same = polyCompare( tool->m_Corners, aCorners );
if( is_same )
return idx;
}
}
// Allocate a new aperture
APERTURE new_tool;
new_tool.m_Corners = aCorners;
new_tool.m_Size = VECTOR2I( 0, 0 ); // Not used
new_tool.m_Type = aType;
new_tool.m_Radius = 0; // Not used
new_tool.m_Rotation = aRotation;
new_tool.m_DCode = last_D_code + 1;
new_tool.m_ApertureAttribute = aApertureAttribute;
m_apertures.push_back( new_tool );
return m_apertures.size() - 1;
}
void GERBER_PLOTTER::selectAperture( const VECTOR2I& aSize, int aRadius, const EDA_ANGLE& aRotation,
APERTURE::APERTURE_TYPE aType, int aApertureAttribute )
{
bool change = ( m_currentApertureIdx < 0 ) ||
( m_apertures[m_currentApertureIdx].m_Type != aType ) ||
( m_apertures[m_currentApertureIdx].m_Size != aSize ) ||
( m_apertures[m_currentApertureIdx].m_Radius != aRadius ) ||
( m_apertures[m_currentApertureIdx].m_Rotation != aRotation );
if( !change )
change = m_apertures[m_currentApertureIdx].m_ApertureAttribute != aApertureAttribute;
if( change )
{
// Pick an existing aperture or create a new one
m_currentApertureIdx = GetOrCreateAperture( aSize, aRadius, aRotation, aType,
aApertureAttribute );
fprintf( m_outputFile, "D%d*\n", m_apertures[m_currentApertureIdx].m_DCode );
}
}
void GERBER_PLOTTER::selectAperture( const std::vector<VECTOR2I>& aCorners,
const EDA_ANGLE& aRotation, APERTURE::APERTURE_TYPE aType,
int aApertureAttribute )
{
bool change = ( m_currentApertureIdx < 0 ) ||
( m_apertures[m_currentApertureIdx].m_Type != aType ) ||
( m_apertures[m_currentApertureIdx].m_Corners.size() != aCorners.size() ) ||
( m_apertures[m_currentApertureIdx].m_Rotation != aRotation );
if( !change ) // Compare corner lists
{
for( size_t ii = 0; ii < aCorners.size(); ii++ )
{
if( aCorners[ii] != m_apertures[m_currentApertureIdx].m_Corners[ii] )
{
change = true;
break;
}
}
}
if( !change )
change = m_apertures[m_currentApertureIdx].m_ApertureAttribute != aApertureAttribute;
if( change )
{
// Pick an existing aperture or create a new one
m_currentApertureIdx = GetOrCreateAperture( aCorners, aRotation, aType,
aApertureAttribute );
fprintf( m_outputFile, "D%d*\n", m_apertures[m_currentApertureIdx].m_DCode );
}
}
void GERBER_PLOTTER::selectAperture( int aDiameter, const EDA_ANGLE& aPolygonRotation,
APERTURE::APERTURE_TYPE aType, int aApertureAttribute )
{
// Pick an existing aperture or create a new one, matching the
// aDiameter, aPolygonRotation, type and attributes for type =
// AT_REGULAR_POLY3 to AT_REGULAR_POLY12
wxASSERT( aType>= APERTURE::APERTURE_TYPE::AT_REGULAR_POLY3 &&
aType <= APERTURE::APERTURE_TYPE::AT_REGULAR_POLY12 );
VECTOR2I size( aDiameter, (int) ( aPolygonRotation.AsDegrees() * 1000.0 ) );
selectAperture( VECTOR2I( 0, 0 ), aDiameter / 2, aPolygonRotation, aType, aApertureAttribute );
}
void GERBER_PLOTTER::writeApertureList()
{
wxASSERT( m_outputFile );
bool useX1StructuredComment = false;
if( !m_useX2format )
useX1StructuredComment = true;
// Init
for( APERTURE& tool : m_apertures )
{
// aperture sizes are in inch or mm, regardless the
// coordinates format
double fscale = 0.0001 * m_plotScale / m_IUsPerDecimil; // inches
if(! m_gerberUnitInch )
fscale *= 25.4; // size in mm
int attribute = tool.m_ApertureAttribute;
if( attribute != m_apertureAttribute )
{
fputs( GBR_APERTURE_METADATA::FormatAttribute(
(GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB) attribute,
useX1StructuredComment ).c_str(), m_outputFile );
}
fprintf( m_outputFile, "%%ADD%d", tool.m_DCode );
/* Please note: the Gerber specs for mass parameters say that
exponential syntax is *not* allowed and the decimal point should
also be always inserted. So the %g format is ruled out, but %f is fine
(the # modifier forces the decimal point). Sadly the %f formatter
can't remove trailing zeros but that's not a problem, since nothing
forbid it (the file is only slightly longer) */
switch( tool.m_Type )
{
case APERTURE::AT_CIRCLE:
fprintf( m_outputFile, "C,%#f*%%\n", tool.GetDiameter() * fscale );
break;
case APERTURE::AT_RECT:
fprintf( m_outputFile, "R,%#fX%#f*%%\n", tool.m_Size.x * fscale,
tool.m_Size.y * fscale );
break;
case APERTURE::AT_PLOTTING:
fprintf( m_outputFile, "C,%#f*%%\n", tool.m_Size.x * fscale );
break;
case APERTURE::AT_OVAL:
fprintf( m_outputFile, "O,%#fX%#f*%%\n", tool.m_Size.x * fscale,
tool.m_Size.y * fscale );
break;
case APERTURE::AT_REGULAR_POLY:
case APERTURE::AT_REGULAR_POLY3:
case APERTURE::AT_REGULAR_POLY4:
case APERTURE::AT_REGULAR_POLY5:
case APERTURE::AT_REGULAR_POLY6:
case APERTURE::AT_REGULAR_POLY7:
case APERTURE::AT_REGULAR_POLY8:
case APERTURE::AT_REGULAR_POLY9:
case APERTURE::AT_REGULAR_POLY10:
case APERTURE::AT_REGULAR_POLY11:
case APERTURE::AT_REGULAR_POLY12:
fprintf( m_outputFile, "P,%#fX%dX%#f*%%\n", tool.GetDiameter() * fscale,
tool.GetRegPolyVerticeCount(), tool.GetRotation().AsDegrees() );
break;
case APERTURE::AM_ROUND_RECT: // Aperture macro for round rect pads
{
// The aperture macro needs coordinates of the centers of the 4 corners
std::vector<VECTOR2I> corners;
VECTOR2I half_size( tool.m_Size.x/2-tool.m_Radius, tool.m_Size.y/2-tool.m_Radius );
// Ensure half_size.x and half_size.y > minimal value to avoid shapes
// with null size (especially the rectangle with coordinates corners)
// Because the minimal value for a non nul Gerber coord in 10nm
// in format 4.5, use 10 nm as minimal value.
// (Even in 4.6 format, use 10 nm, because gerber viewers can have
// a internal unit bigger than 1 nm)
const int min_size_value = 10;
half_size.x = std::max( half_size.x, min_size_value );
half_size.y = std::max( half_size.y, min_size_value );
corners.emplace_back( -half_size.x, -half_size.y );
corners.emplace_back( half_size.x, -half_size.y );
corners.emplace_back( half_size.x, half_size.y );
corners.emplace_back( -half_size.x, half_size.y );
// Rotate the corner coordinates:
for( int ii = 0; ii < 4; ii++ )
RotatePoint( corners[ii], -tool.m_Rotation );
fprintf( m_outputFile, "%s,%#fX", APER_MACRO_ROUNDRECT_NAME, tool.m_Radius * fscale );
// Add each corner
for( int ii = 0; ii < 4; ii++ )
{
fprintf( m_outputFile, "%#fX%#fX", corners[ii].x * fscale, corners[ii].y * fscale );
}
fprintf( m_outputFile, "0*%%\n" );
}
break;
case APERTURE::AM_ROT_RECT: // Aperture macro for rotated rect pads
fprintf( m_outputFile, "%s,%#fX%#fX%#f*%%\n", APER_MACRO_ROT_RECT_NAME,
tool.m_Size.x * fscale, tool.m_Size.y * fscale, tool.m_Rotation.AsDegrees() );
break;
case APERTURE::APER_MACRO_OUTLINE4P: // Aperture macro for trapezoid pads
case APERTURE::APER_MACRO_OUTLINE5P: // Aperture macro for chamfered rect pads
case APERTURE::APER_MACRO_OUTLINE6P: // Aperture macro for chamfered rect pads
case APERTURE::APER_MACRO_OUTLINE7P: // Aperture macro for chamfered rect pads
case APERTURE::APER_MACRO_OUTLINE8P: // Aperture macro for chamfered rect pads
switch( tool.m_Type )
{
case APERTURE::APER_MACRO_OUTLINE4P:
fprintf( m_outputFile, "%s,", APER_MACRO_OUTLINE4P_NAME );
break;
case APERTURE::APER_MACRO_OUTLINE5P:
fprintf( m_outputFile, "%s,", APER_MACRO_OUTLINE5P_NAME );
break;
case APERTURE::APER_MACRO_OUTLINE6P:
fprintf( m_outputFile, "%s,", APER_MACRO_OUTLINE6P_NAME );
break;
case APERTURE::APER_MACRO_OUTLINE7P:
fprintf( m_outputFile, "%s,", APER_MACRO_OUTLINE7P_NAME );
break;
case APERTURE::APER_MACRO_OUTLINE8P:
fprintf( m_outputFile, "%s,", APER_MACRO_OUTLINE8P_NAME );
break;
default:
break;
}
// Output all corners (should be 4 to 8 corners)
// Remember: the Y coordinate must be negated, due to the fact in Pcbnew
// the Y axis is from top to bottom
for( size_t ii = 0; ii < tool.m_Corners.size(); ii++ )
{
fprintf( m_outputFile, "%#fX%#fX", tool.m_Corners[ii].x * fscale,
-tool.m_Corners[ii].y * fscale );
}
// close outline and output rotation
fprintf( m_outputFile, "%#f*%%\n", tool.m_Rotation.AsDegrees() );
break;
case APERTURE::AM_ROTATED_OVAL: // Aperture macro for rotated oval pads
// (not rotated is a primitive)
// m_Size.x = full length; m_Size.y = width, and the macro aperture expects
// the position of ends
{
// the seg_len is the distance between the 2 circle centers
int seg_len = tool.m_Size.x - tool.m_Size.y;
// Center of the circle on the segment start point:
VECTOR2I start( seg_len/2, 0 );
// Center of the circle on the segment end point:
VECTOR2I end( - seg_len/2, 0 );
RotatePoint( start, tool.m_Rotation );
RotatePoint( end, tool.m_Rotation );
fprintf( m_outputFile, "%s,%#fX%#fX%#fX%#fX%#fX0*%%\n", APER_MACRO_SHAPE_OVAL_NAME,
tool.m_Size.y * fscale, // width
start.x * fscale, -start.y * fscale, // X,Y corner start pos
end.x * fscale, -end.y * fscale ); // X,Y cornerend pos
}
break;
case APERTURE::AM_FREE_POLYGON:
{
// Find the aperture macro name in the list of aperture macro
// created on the fly for this polygon:
int idx = m_am_freepoly_list.FindAm( tool.m_Corners );
// Write DCODE id ( "%ADDxx" is already in buffer) and rotation
// the full line is something like :%ADD12FreePoly1,45.000000*%
fprintf( m_outputFile, "%s%d,%#f*%%\n", AM_FREEPOLY_BASENAME, idx,
tool.m_Rotation.AsDegrees() );
break;
}
}
m_apertureAttribute = attribute;
// Currently reset the aperture attribute. Perhaps a better optimization
// is to store the last attribute
if( attribute )
{
if( m_useX2format )
fputs( "%TD*%\n", m_outputFile );
else
fputs( "G04 #@! TD*\n", m_outputFile );
m_apertureAttribute = 0;
}
}
}
void GERBER_PLOTTER::PenTo( const VECTOR2I& aPos, char plume )
{
wxASSERT( m_outputFile );
VECTOR2D pos_dev = userToDeviceCoordinates( aPos );
switch( plume )
{
case 'Z':
break;
case 'U':
emitDcode( pos_dev, 2 );
break;
case 'D':
emitDcode( pos_dev, 1 );
}
m_penState = plume;
}
void GERBER_PLOTTER::Rect( const VECTOR2I& p1, const VECTOR2I& p2, FILL_T fill, int width )
{
std::vector<VECTOR2I> cornerList;
cornerList.reserve( 5 );
// Build corners list
cornerList.push_back( p1 );
VECTOR2I corner( p1.x, p2.y );
cornerList.push_back( corner );
cornerList.push_back( p2 );
corner.x = p2.x;
corner.y = p1.y;
cornerList.push_back( corner );
cornerList.push_back( p1 );
PlotPoly( cornerList, fill, width );
}
void GERBER_PLOTTER::Circle( const VECTOR2I& aCenter, int aDiameter, FILL_T aFill, int aWidth )
{
Arc( aCenter, ANGLE_0, ANGLE_180, aDiameter / 2, aFill, aWidth );
Arc( aCenter, ANGLE_180, ANGLE_180, aDiameter / 2, aFill, aWidth );
}
void GERBER_PLOTTER::Arc( const VECTOR2D& aCenter, const EDA_ANGLE& aStartAngle,
const EDA_ANGLE& aAngle, double aRadius, FILL_T aFill, int aWidth )
{
SetCurrentLineWidth( aWidth );
double arcLength = std::abs( aRadius * aAngle.AsRadians() );
if( arcLength < 100 || std::abs( aAngle.AsDegrees() ) < 0.1 )
{
// Prevent plotting very short arcs as full circles, especially with 4.5 mm precision.
// Also reduce the risk of integer overflow issues.
polyArc( aCenter, aStartAngle, aAngle, aRadius, aFill, aWidth );
}
else
{
EDA_ANGLE endAngle = aStartAngle + aAngle;
// aFill is not used here.
plotArc( aCenter, aStartAngle, endAngle, aRadius, false );
}
}
void GERBER_PLOTTER::plotArc( const SHAPE_ARC& aArc, bool aPlotInRegion )
{
VECTOR2I start( aArc.GetP0() );
VECTOR2I end( aArc.GetP1() );
VECTOR2I center( aArc.GetCenter() );
if( !aPlotInRegion )
MoveTo( start);
else
LineTo( start );
VECTOR2D devEnd = userToDeviceCoordinates( end );
// devRelCenter is the position on arc center relative to the arc start, in Gerber coord.
// Warning: it is **not** userToDeviceCoordinates( center - start ) when the plotter
// has an offset.
VECTOR2D devRelCenter = userToDeviceCoordinates( center ) - userToDeviceCoordinates( start );
// We need to know if the arc is CW or CCW in device coordinates, so build this arc.
SHAPE_ARC deviceArc( userToDeviceCoordinates( start ),
userToDeviceCoordinates( aArc.GetArcMid() ),
devEnd, 0 );
fprintf( m_outputFile, "G75*\n" ); // Multiquadrant (360 degrees) mode
if( deviceArc.IsClockwise() )
fprintf( m_outputFile, "G02*\n" ); // Active circular interpolation, CW
else
fprintf( m_outputFile, "G03*\n" ); // Active circular interpolation, CCW
fprintf( m_outputFile, "X%dY%dI%dJ%dD01*\n",
KiROUND( devEnd.x ), KiROUND( devEnd.y ),
KiROUND( devRelCenter.x ), KiROUND( devRelCenter.y ) );
fprintf( m_outputFile, "G01*\n" ); // Back to linear interpolate (perhaps useless here).
}
void GERBER_PLOTTER::plotArc( const VECTOR2I& aCenter, const EDA_ANGLE& aStartAngle,
const EDA_ANGLE& aEndAngle, double aRadius, bool aPlotInRegion )
{
VECTOR2I start, end;
start.x = KiROUND( aCenter.x + aRadius * aStartAngle.Cos() );
start.y = KiROUND( aCenter.y + aRadius * aStartAngle.Sin() );
if( !aPlotInRegion )
MoveTo( start );
else
LineTo( start );
end.x = KiROUND( aCenter.x + aRadius * aEndAngle.Cos() );
end.y = KiROUND( aCenter.y + aRadius * aEndAngle.Sin() );
VECTOR2D devEnd = userToDeviceCoordinates( end );
// devRelCenter is the position on arc center relative to the arc start, in Gerber coord.
VECTOR2D devRelCenter = userToDeviceCoordinates( aCenter ) - userToDeviceCoordinates( start );
fprintf( m_outputFile, "G75*\n" ); // Multiquadrant (360 degrees) mode
if( aStartAngle > aEndAngle )
fprintf( m_outputFile, "G03*\n" ); // Active circular interpolation, CCW
else
fprintf( m_outputFile, "G02*\n" ); // Active circular interpolation, CW
fprintf( m_outputFile, "X%dY%dI%dJ%dD01*\n",
KiROUND( devEnd.x ), KiROUND( devEnd.y ),
KiROUND( devRelCenter.x ), KiROUND( devRelCenter.y ) );
fprintf( m_outputFile, "G01*\n" ); // Back to linear interpolate (perhaps useless here).
}
void GERBER_PLOTTER::PlotGerberRegion( const SHAPE_LINE_CHAIN& aPoly, GBR_METADATA* aGbrMetadata )
{
if( aPoly.PointCount() <= 2 )
return;
bool clearTA_AperFunction = false; // true if a TA.AperFunction is used
if( aGbrMetadata )
{
std::string attrib = aGbrMetadata->m_ApertureMetadata.FormatAttribute( !m_useX2format );
if( !attrib.empty() )
{
fputs( attrib.c_str(), m_outputFile );
clearTA_AperFunction = true;
}
}
PlotPoly( aPoly, FILL_T::FILLED_SHAPE, 0 , aGbrMetadata );
// Clear the TA attribute, to avoid the next item to inherit it:
if( clearTA_AperFunction )
{
if( m_useX2format )
{
fputs( "%TD.AperFunction*%\n", m_outputFile );
}
else
{
fputs( "G04 #@! TD.AperFunction*\n", m_outputFile );
}
}
}
void GERBER_PLOTTER::PlotGerberRegion( const std::vector<VECTOR2I>& aCornerList,
GBR_METADATA* aGbrMetadata )
{
if( aCornerList.size() <= 2 )
return;
bool clearTA_AperFunction = false; // true if a TA.AperFunction is used
if( aGbrMetadata )
{
std::string attrib = aGbrMetadata->m_ApertureMetadata.FormatAttribute( !m_useX2format );
if( !attrib.empty() )
{
fputs( attrib.c_str(), m_outputFile );
clearTA_AperFunction = true;
}
}
PlotPoly( aCornerList, FILL_T::FILLED_SHAPE, 0, aGbrMetadata );
// Clear the TA attribute, to avoid the next item to inherit it:
if( clearTA_AperFunction )
{
if( m_useX2format )
{
fputs( "%TD.AperFunction*%\n", m_outputFile );
}
else
{
fputs( "G04 #@! TD.AperFunction*\n", m_outputFile );
}
}
}
void GERBER_PLOTTER::PlotPolyAsRegion( const SHAPE_LINE_CHAIN& aPoly, FILL_T aFill,
int aWidth, GBR_METADATA* aGbrMetadata )
{
// plot a filled polygon using Gerber region, therefore adding X2 attributes
// to the solid polygon
if( aWidth || aFill == FILL_T::NO_FILL )
PlotPoly( aPoly, FILL_T::NO_FILL, aWidth, aGbrMetadata );
if( aFill != FILL_T::NO_FILL )
PlotGerberRegion( aPoly, aGbrMetadata );
}
void GERBER_PLOTTER::PlotPoly( const SHAPE_LINE_CHAIN& aPoly, FILL_T aFill, int aWidth,
void* aData )
{
if( aPoly.CPoints().size() <= 1 )
return;
// Gerber format does not know filled polygons with thick outline
// Therefore, to plot a filled polygon with outline having a thickness,
// one should plot outline as thick segments
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( aFill != FILL_T::NO_FILL )
{
fputs( "G36*\n", m_outputFile );
MoveTo( VECTOR2I( aPoly.CPoint( 0 ) ) );
fputs( "G01*\n", m_outputFile ); // Set linear interpolation.
for( int ii = 1; ii < aPoly.PointCount(); ii++ )
{
int arcindex = aPoly.ArcIndex( ii );
if( arcindex < 0 )
{
/// Plain point
LineTo( VECTOR2I( aPoly.CPoint( ii ) ) );
}
else
{
const SHAPE_ARC& arc = aPoly.Arc( arcindex );
plotArc( arc, true );
// skip points on arcs, since we plot the arc itself
while( ii+1 < aPoly.PointCount() && arcindex == aPoly.ArcIndex( ii+1 ) )
ii++;
}
}
// If the polygon is not closed, close it:
if( aPoly.CPoint( 0 ) != aPoly.CPoint( -1 ) )
FinishTo( VECTOR2I( aPoly.CPoint( 0 ) ) );
fputs( "G37*\n", m_outputFile );
}
if( aWidth > 0 || aFill == FILL_T::NO_FILL ) // Draw the polyline/polygon outline
{
SetCurrentLineWidth( aWidth, gbr_metadata );
MoveTo( VECTOR2I( aPoly.CPoint( 0 ) ) );
for( int ii = 1; ii < aPoly.PointCount(); ii++ )
{
int arcindex = aPoly.ArcIndex( ii );
if( arcindex < 0 )
{
/// Plain point
LineTo( VECTOR2I( aPoly.CPoint( ii ) ) );
}
else
{
const SHAPE_ARC& arc = aPoly.Arc( arcindex );
plotArc( arc, true );
// skip points on arcs, since we plot the arc itself
while( ii+1 < aPoly.PointCount() && arcindex == aPoly.ArcIndex( ii+1 ) )
ii++;
}
}
// Ensure the thick outline is closed for filled polygons
// (if not filled, could be only a polyline)
if( ( aPoly.CPoint( 0 ) != aPoly.CPoint( -1 ) )
&& ( aPoly.IsClosed() || aFill != FILL_T::NO_FILL ) )
LineTo( VECTOR2I( aPoly.CPoint( 0 ) ) );
PenFinish();
}
}
void GERBER_PLOTTER::PlotPoly( const std::vector<VECTOR2I>& aCornerList, FILL_T aFill, int aWidth,
void * aData )
{
if( aCornerList.size() <= 1 )
return;
// Gerber format does not know filled polygons with thick outline
// Therefore, to plot a filled polygon with outline having a thickness,
// one should plot outline as thick segments
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( aFill != FILL_T::NO_FILL )
{
fputs( "G36*\n", m_outputFile );
MoveTo( aCornerList[0] );
fputs( "G01*\n", m_outputFile ); // Set linear interpolation.
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
LineTo( aCornerList[ii] );
// If the polygon is not closed, close it:
if( aCornerList[0] != aCornerList[aCornerList.size()-1] )
FinishTo( aCornerList[0] );
fputs( "G37*\n", m_outputFile );
}
if( aWidth > 0 || aFill == FILL_T::NO_FILL ) // Draw the polyline/polygon outline
{
SetCurrentLineWidth( aWidth, gbr_metadata );
MoveTo( aCornerList[0] );
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
LineTo( aCornerList[ii] );
// Ensure the thick outline is closed for filled polygons
// (if not filled, could be only a polyline)
if( aFill != FILL_T::NO_FILL && ( aCornerList[aCornerList.size() - 1] != aCornerList[0] ) )
LineTo( aCornerList[0] );
PenFinish();
}
}
void GERBER_PLOTTER::ThickSegment( const VECTOR2I& start, const VECTOR2I& end, int width,
OUTLINE_MODE tracemode, void* aData )
{
if( tracemode == FILLED )
{
GBR_METADATA *gbr_metadata = static_cast<GBR_METADATA*>( aData );
SetCurrentLineWidth( width, gbr_metadata );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
MoveTo( start );
FinishTo( end );
}
else
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
segmentAsOval( start, end, width, tracemode );
}
}
void GERBER_PLOTTER::ThickArc( const VECTOR2D& aCentre, const EDA_ANGLE& aStartAngle,
const EDA_ANGLE& aAngle, double aRadius, int aWidth,
OUTLINE_MODE aTraceMode, void* aData )
{
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
SetCurrentLineWidth( aWidth, gbr_metadata );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( aTraceMode == FILLED )
{
Arc( aCentre, aStartAngle, aAngle, aRadius, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
else
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
Arc( aCentre, aStartAngle, aAngle, aRadius - ( aWidth - m_currentPenWidth ) / 2,
FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
Arc( aCentre, aStartAngle, aAngle, aRadius + ( aWidth - m_currentPenWidth ) / 2,
FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
}
void GERBER_PLOTTER::ThickRect( const VECTOR2I& p1, const VECTOR2I& p2, int width,
OUTLINE_MODE tracemode, void* aData )
{
GBR_METADATA *gbr_metadata = static_cast<GBR_METADATA*>( aData );
SetCurrentLineWidth( width, gbr_metadata );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( tracemode == FILLED )
{
Rect( p1, p2, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
else
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
VECTOR2I offsetp1( p1.x - ( width - m_currentPenWidth ) / 2,
p1.y - (width - m_currentPenWidth) / 2 );
VECTOR2I offsetp2( p2.x + ( width - m_currentPenWidth ) / 2,
p2.y + (width - m_currentPenWidth) / 2 );
Rect( offsetp1, offsetp2, FILL_T::NO_FILL, -1 );
offsetp1.x += (width - m_currentPenWidth);
offsetp1.y += (width - m_currentPenWidth);
offsetp2.x -= (width - m_currentPenWidth);
offsetp2.y -= (width - m_currentPenWidth);
Rect( offsetp1, offsetp2, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
}
void GERBER_PLOTTER::ThickCircle( const VECTOR2I& pos, int diametre, int width,
OUTLINE_MODE tracemode, void* aData )
{
GBR_METADATA *gbr_metadata = static_cast<GBR_METADATA*>( aData );
SetCurrentLineWidth( width, gbr_metadata );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( tracemode == FILLED )
{
Circle( pos, diametre, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
else
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, gbr_metadata );
Circle( pos, diametre - (width - m_currentPenWidth), FILL_T::NO_FILL,
DO_NOT_SET_LINE_WIDTH );
Circle( pos, diametre + (width - m_currentPenWidth), FILL_T::NO_FILL,
DO_NOT_SET_LINE_WIDTH );
}
}
void GERBER_PLOTTER::FilledCircle( const VECTOR2I& pos, int diametre,
OUTLINE_MODE tracemode, void* aData )
{
// A filled circle is a graphic item, not a pad.
// So it is drawn, not flashed.
GBR_METADATA *gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
if( tracemode == FILLED )
{
// Draw a circle of diameter = diameter/2 with a line thickness = radius,
// To create a filled circle
SetCurrentLineWidth( diametre/2, gbr_metadata );
Circle( pos, diametre/2, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
else
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, gbr_metadata );
Circle( pos, diametre, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
}
void GERBER_PLOTTER::FlashPadCircle( const VECTOR2I& pos, int diametre, OUTLINE_MODE trace_mode,
void* aData )
{
VECTOR2I size( diametre, diametre );
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( trace_mode == SKETCH )
{
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
Circle( pos, diametre, FILL_T::NO_FILL, DO_NOT_SET_LINE_WIDTH );
}
else
{
VECTOR2D pos_dev = userToDeviceCoordinates( pos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( size, 0, ANGLE_0, APERTURE::AT_CIRCLE, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_dev, 3 );
}
}
void GERBER_PLOTTER::FlashPadOval( const VECTOR2I& aPos, const VECTOR2I& aSize,
const EDA_ANGLE& aOrient, OUTLINE_MODE aTraceMode, void* aData )
{
wxASSERT( m_outputFile );
VECTOR2I size( aSize );
EDA_ANGLE orient( aOrient );
orient.Normalize();
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
// Flash a vertical or horizontal shape (this is a basic aperture).
if( orient.IsCardinal() && aTraceMode == FILLED )
{
if( orient.IsCardinal90() )
std::swap( size.x, size.y );
VECTOR2D pos_device = userToDeviceCoordinates( aPos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( size, 0, ANGLE_0, APERTURE::AT_OVAL, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_device, 3 );
}
else // Plot pad as region.
// Only regions and flashed items accept a object attribute TO.P for the pin name
{
if( aTraceMode == FILLED )
{
#ifdef GBR_USE_MACROS_FOR_ROTATED_OVAL
if( !m_gerberDisableApertMacros )
#endif
{
m_hasApertureRotOval = true;
// We are using a aperture macro that expect size.y < size.x
// i.e draw a horizontal line for rotation = 0.0
// size.x = length, size.y = width
if( size.x < size.y )
{
std::swap( size.x, size.y );
orient += ANGLE_90;
if( orient > ANGLE_180 )
orient -= ANGLE_180;
}
VECTOR2D pos_device = userToDeviceCoordinates( aPos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( size, 0, orient, APERTURE::AM_ROTATED_OVAL, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_device, 3 );
return;
}
// Draw the oval as round rect pad with a radius = 50% min size)
// In gerber file, it will be drawn as a region with arcs, and can be
// detected as pads (similar to a flashed pad)
FlashPadRoundRect( aPos, aSize, std::min( aSize.x, aSize.y ) / 2, orient, FILLED,
aData );
}
else // Non filled shape: plot outlines:
{
if( size.x > size.y )
{
std::swap( size.x, size.y );
if( orient < ANGLE_270 )
orient += ANGLE_90;
else
orient -= ANGLE_270;
}
sketchOval( aPos, size, orient, -1 );
}
}
}
void GERBER_PLOTTER::FlashPadRect( const VECTOR2I& pos, const VECTOR2I& aSize,
const EDA_ANGLE& aOrient, OUTLINE_MODE aTraceMode, void* aData )
{
wxASSERT( m_outputFile );
VECTOR2I size( aSize );
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
// Horizontal / vertical rect can use a basic aperture (not a macro)
// so use it for rotation n*90 deg
if( aOrient.IsCardinal() )
{
if( aOrient.IsCardinal90() )
// Build the not rotated equivalent shape:
std::swap( size.x, size.y );
if( aTraceMode == SKETCH )
{
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
Rect( VECTOR2I( pos.x - ( size.x / 2 ), pos.y - (size.y / 2 ) ),
VECTOR2I( pos.x + ( size.x / 2 ), pos.y + (size.y / 2 ) ),
FILL_T::NO_FILL, GetCurrentLineWidth() );
}
else
{
VECTOR2D pos_device = userToDeviceCoordinates( pos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( size, 0, ANGLE_0, APERTURE::AT_RECT, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_device, 3 );
}
}
else
{
#ifdef GBR_USE_MACROS_FOR_ROTATED_RECT
if( aTraceMode != SKETCH && !m_gerberDisableApertMacros )
{
m_hasApertureRotRect = true;
VECTOR2D pos_device = userToDeviceCoordinates( pos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( size, 0, aOrient, APERTURE::AM_ROT_RECT, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_device, 3 );
}
else
#endif
{
// plot pad shape as Gerber region
VECTOR2I coord[4];
// coord[0] is assumed the lower left
// coord[1] is assumed the upper left
// coord[2] is assumed the upper right
// coord[3] is assumed the lower right
coord[0].x = -size.x/2; // lower left
coord[0].y = size.y/2;
coord[1].x = -size.x/2; // upper left
coord[1].y = -size.y/2;
coord[2].x = size.x/2; // upper right
coord[2].y = -size.y/2;
coord[3].x = size.x/2; // lower right
coord[3].y = size.y/2;
FlashPadTrapez( pos, coord, aOrient, aTraceMode, aData );
}
}
}
void GERBER_PLOTTER::FlashPadRoundRect( const VECTOR2I& aPadPos, const VECTOR2I& aSize,
int aCornerRadius, const EDA_ANGLE& aOrient,
OUTLINE_MODE aTraceMode, void* aData )
{
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( aTraceMode != FILLED )
{
SHAPE_POLY_SET outline;
TransformRoundChamferedRectToPolygon( outline, aPadPos, aSize, aOrient, aCornerRadius, 0.0,
0, 0, GetPlotterArcHighDef(), ERROR_INSIDE );
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, &gbr_metadata );
std::vector<VECTOR2I> cornerList;
// TransformRoundRectToPolygon creates only one convex polygon
SHAPE_LINE_CHAIN& poly = outline.Outline( 0 );
cornerList.reserve( poly.PointCount() + 1 );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
// Close polygon
cornerList.push_back( cornerList[0] );
// plot outlines
PlotPoly( cornerList, FILL_T::NO_FILL, GetCurrentLineWidth(), gbr_metadata );
}
else
{
#ifdef GBR_USE_MACROS_FOR_ROUNDRECT
if( !m_gerberDisableApertMacros )
#endif
{
m_hasApertureRoundRect = true;
VECTOR2D pos_dev = userToDeviceCoordinates( aPadPos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( aSize, aCornerRadius, aOrient, APERTURE::AM_ROUND_RECT,
aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_dev, 3 );
return;
}
// A Pad RoundRect is plotted as a Gerber region.
// Initialize region metadata:
bool clearTA_AperFunction = false; // true if a TA.AperFunction is used
if( gbr_metadata )
{
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
std::string attrib = gbr_metadata->m_ApertureMetadata.FormatAttribute( !m_useX2format );
if( !attrib.empty() )
{
fputs( attrib.c_str(), m_outputFile );
clearTA_AperFunction = true;
}
}
// Plot the region using arcs in corners.
plotRoundRectAsRegion( aPadPos, aSize, aCornerRadius, aOrient );
// Clear the TA attribute, to avoid the next item to inherit it:
if( clearTA_AperFunction )
{
if( m_useX2format )
fputs( "%TD.AperFunction*%\n", m_outputFile );
else
fputs( "G04 #@! TD.AperFunction*\n", m_outputFile );
}
}
}
void GERBER_PLOTTER::plotRoundRectAsRegion( const VECTOR2I& aRectCenter, const VECTOR2I& aSize,
int aCornerRadius, const EDA_ANGLE& aOrient )
{
// The region outline is generated by 4 sides and 4 90 deg arcs
// 1 --- 2
// | c |
// 4 --- 3
// Note also in user coordinates the Y axis is from top to bottom
// for historical reasons.
// A helper structure to handle outlines coordinates (segments and arcs)
// in user coordinates
struct RR_EDGE
{
VECTOR2I m_start;
VECTOR2I m_end;
VECTOR2I m_center;
EDA_ANGLE m_arc_angle_start;
};
int hsizeX = aSize.x/2;
int hsizeY = aSize.y/2;
RR_EDGE curr_edge;
std::vector<RR_EDGE> rr_outline;
rr_outline.reserve( 4 );
// Build outline coordinates, relative to rectangle center, rotation 0:
// Top left corner 1 (and 4 to 1 left vertical side @ x=-hsizeX)
curr_edge.m_start.x = -hsizeX;
curr_edge.m_start.y = hsizeY - aCornerRadius;
curr_edge.m_end.x = curr_edge.m_start.x;
curr_edge.m_end.y = -hsizeY + aCornerRadius;
curr_edge.m_center.x = -hsizeX + aCornerRadius;
curr_edge.m_center.y = curr_edge.m_end.y;
curr_edge.m_arc_angle_start = aOrient + ANGLE_180;
rr_outline.push_back( curr_edge );
// Top right corner 2 (and 1 to 2 top horizontal side @ y=-hsizeY)
curr_edge.m_start.x = -hsizeX + aCornerRadius;
curr_edge.m_start.y = -hsizeY;
curr_edge.m_end.x = hsizeX - aCornerRadius;
curr_edge.m_end.y = curr_edge.m_start.y;
curr_edge.m_center.x = curr_edge.m_end.x;
curr_edge.m_center.y = -hsizeY + aCornerRadius;
curr_edge.m_arc_angle_start = aOrient + ANGLE_90;
rr_outline.push_back( curr_edge );
// bottom right corner 3 (and 2 to 3 right vertical side @ x=hsizeX)
curr_edge.m_start.x = hsizeX;
curr_edge.m_start.y = -hsizeY + aCornerRadius;
curr_edge.m_end.x = curr_edge.m_start.x;
curr_edge.m_end.y = hsizeY - aCornerRadius;
curr_edge.m_center.x = hsizeX - aCornerRadius;
curr_edge.m_center.y = curr_edge.m_end.y;
curr_edge.m_arc_angle_start = aOrient + ANGLE_0;
rr_outline.push_back( curr_edge );
// bottom left corner 4 (and 3 to 4 bottom horizontal side @ y=hsizeY)
curr_edge.m_start.x = hsizeX - aCornerRadius;
curr_edge.m_start.y = hsizeY;
curr_edge.m_end.x = -hsizeX + aCornerRadius;
curr_edge.m_end.y = curr_edge.m_start.y;
curr_edge.m_center.x = curr_edge.m_end.x;
curr_edge.m_center.y = hsizeY - aCornerRadius;
curr_edge.m_arc_angle_start = aOrient - ANGLE_90;
rr_outline.push_back( curr_edge );
// Move relative coordinates to the actual location and rotation:
VECTOR2I arc_last_center;
EDA_ANGLE arc_last_angle = curr_edge.m_arc_angle_start - ANGLE_90;
for( RR_EDGE& rr_edge: rr_outline )
{
RotatePoint( rr_edge.m_start, aOrient );
RotatePoint( rr_edge.m_end, aOrient );
RotatePoint( rr_edge.m_center, aOrient );
rr_edge.m_start += aRectCenter;
rr_edge.m_end += aRectCenter;
rr_edge.m_center += aRectCenter;
arc_last_center = rr_edge.m_center;
}
// Ensure the region is a closed polygon, i.e. the end point of last segment
// (end of arc) is the same as the first point. Rounding issues can create a
// small difference, mainly for rotated pads.
// calculate last point (end of last arc):
VECTOR2I last_pt;
last_pt.x = arc_last_center.x + KiROUND( aCornerRadius * arc_last_angle.Cos() );
last_pt.y = arc_last_center.y - KiROUND( aCornerRadius * arc_last_angle.Sin() );
VECTOR2I first_pt = rr_outline[0].m_start;
#if 0 // For test only:
if( last_pt != first_pt )
wxLogMessage( wxS( "first pt %d %d last pt %d %d" ),
first_pt.x, first_pt.y, last_pt.x, last_pt.y );
#endif
fputs( "G36*\n", m_outputFile ); // Start region
fputs( "G01*\n", m_outputFile ); // Set linear interpolation.
first_pt = last_pt;
MoveTo( first_pt ); // Start point of region, must be same as end point
for( RR_EDGE& rr_edge: rr_outline )
{
if( aCornerRadius ) // Guard: ensure we do not create arcs with radius = 0
{
// LineTo( rr_edge.m_end ); // made in plotArc()
plotArc( rr_edge.m_center, -rr_edge.m_arc_angle_start,
-rr_edge.m_arc_angle_start + ANGLE_90, aCornerRadius, true );
}
else
{
LineTo( rr_edge.m_end );
}
}
fputs( "G37*\n", m_outputFile ); // Close region
}
void GERBER_PLOTTER::FlashPadCustom( const VECTOR2I& aPadPos, const VECTOR2I& aSize,
const EDA_ANGLE& aOrient, SHAPE_POLY_SET* aPolygons,
OUTLINE_MODE aTraceMode, void* aData )
{
// A Pad custom is plotted as polygon (a region in Gerber language).
GBR_METADATA gbr_metadata;
if( aData )
gbr_metadata = *static_cast<GBR_METADATA*>( aData );
SHAPE_POLY_SET polyshape = aPolygons->CloneDropTriangulation();
if( aTraceMode != FILLED )
{
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, &gbr_metadata );
}
std::vector<VECTOR2I> cornerList;
for( int cnt = 0; cnt < polyshape.OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = polyshape.Outline( cnt );
cornerList.clear();
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
// Close polygon
cornerList.push_back( cornerList[0] );
if( aTraceMode == SKETCH )
{
PlotPoly( cornerList, FILL_T::NO_FILL, GetCurrentLineWidth(), &gbr_metadata );
}
else
{
#ifdef GBR_USE_MACROS_FOR_CUSTOM_PAD
if( m_gerberDisableApertMacros
|| cornerList.size() > GBR_MACRO_FOR_CUSTOM_PAD_MAX_CORNER_COUNT )
{
PlotGerberRegion( cornerList, &gbr_metadata );
}
else
{
// An AM will be created. the shape must be in position 0,0 and orientation 0
// to be able to reuse the same AM for pads having the same shape
for( size_t ii = 0; ii < cornerList.size(); ii++ )
{
cornerList[ii] -= aPadPos;
RotatePoint( cornerList[ii], -aOrient );
}
VECTOR2D pos_dev = userToDeviceCoordinates( aPadPos );
selectAperture( cornerList, aOrient, APERTURE::AM_FREE_POLYGON,
gbr_metadata.GetApertureAttrib() );
formatNetAttribute( &gbr_metadata.m_NetlistMetadata );
emitDcode( pos_dev, 3 );
}
#else
PlotGerberRegion( cornerList, &gbr_metadata );
#endif
}
}
}
void GERBER_PLOTTER::FlashPadChamferRoundRect( const VECTOR2I& aShapePos, const VECTOR2I& aPadSize,
int aCornerRadius, double aChamferRatio,
int aChamferPositions, const EDA_ANGLE& aPadOrient,
OUTLINE_MODE aPlotMode, void* aData )
{
GBR_METADATA gbr_metadata;
if( aData )
gbr_metadata = *static_cast<GBR_METADATA*>( aData );
VECTOR2D pos_device = userToDeviceCoordinates( aShapePos );
SHAPE_POLY_SET outline;
std::vector<VECTOR2I> cornerList;
bool hasRoundedCorner = aCornerRadius != 0 && aChamferPositions != 15;
#ifdef GBR_USE_MACROS_FOR_CHAMFERED_RECT
// Sketch mode or round rect shape or Apert Macros disabled
if( aPlotMode != FILLED || hasRoundedCorner || m_gerberDisableApertMacros )
#endif
{
TransformRoundChamferedRectToPolygon( outline, aShapePos, aPadSize, aPadOrient,
aCornerRadius, aChamferRatio, aChamferPositions, 0,
GetPlotterArcHighDef(), ERROR_INSIDE );
// Build the corner list
const SHAPE_LINE_CHAIN& corners = outline.Outline(0);
for( int ii = 0; ii < corners.PointCount(); ii++ )
cornerList.emplace_back( corners.CPoint( ii ).x, corners.CPoint( ii ).y );
// Close the polygon
cornerList.push_back( cornerList[0] );
if( aPlotMode == SKETCH )
PlotPoly( cornerList, FILL_T::NO_FILL, GetCurrentLineWidth(), &gbr_metadata );
else
{
#ifdef GBR_USE_MACROS_FOR_CHAMFERED_ROUND_RECT
if( m_gerberDisableApertMacros )
{
PlotGerberRegion( cornerList, &gbr_metadata );
}
else
{
// An AM will be created. the shape must be in position 0,0 and orientation 0
// to be able to reuse the same AM for pads having the same shape
for( size_t ii = 0; ii < cornerList.size(); ii++ )
{
cornerList[ii] -= aShapePos;
RotatePoint( cornerList[ii], -aPadOrient );
}
selectAperture( cornerList, aPadOrient, APERTURE::AM_FREE_POLYGON,
gbr_metadata.GetApertureAttrib() );
formatNetAttribute( &gbr_metadata.m_NetlistMetadata );
emitDcode( pos_device, 3 );
}
#else
PlotGerberRegion( cornerList, &gbr_metadata );
#endif
}
return;
}
// Build the chamfered polygon (4 to 8 corners )
TransformRoundChamferedRectToPolygon( outline, VECTOR2I( 0, 0 ), aPadSize, ANGLE_0, 0,
aChamferRatio, aChamferPositions, 0,
GetPlotterArcHighDef(), ERROR_INSIDE );
// Build the corner list
const SHAPE_LINE_CHAIN& corners = outline.Outline(0);
// Generate the polygon (4 to 8 corners )
for( int ii = 0; ii < corners.PointCount(); ii++ )
cornerList.emplace_back( corners.CPoint( ii ).x, corners.CPoint( ii ).y );
switch( cornerList.size() )
{
case 4:
m_hasApertureOutline4P = true;
selectAperture( cornerList, aPadOrient, APERTURE::APER_MACRO_OUTLINE4P,
gbr_metadata.GetApertureAttrib() );
break;
case 5:
m_hasApertureChamferedRect = true;
selectAperture( cornerList, aPadOrient, APERTURE::APER_MACRO_OUTLINE5P,
gbr_metadata.GetApertureAttrib() );
break;
case 6:
m_hasApertureChamferedRect = true;
selectAperture( cornerList, aPadOrient, APERTURE::APER_MACRO_OUTLINE6P,
gbr_metadata.GetApertureAttrib() );
break;
case 7:
m_hasApertureChamferedRect = true;
selectAperture( cornerList, aPadOrient, APERTURE::APER_MACRO_OUTLINE7P,
gbr_metadata.GetApertureAttrib() );
break;
case 8:
m_hasApertureChamferedRect = true;
selectAperture( cornerList, aPadOrient, APERTURE::APER_MACRO_OUTLINE8P,
gbr_metadata.GetApertureAttrib() );
break;
default:
wxLogMessage( wxS( "FlashPadChamferRoundRect(): Unexpected number of corners (%d)" ),
(int)cornerList.size() );
break;
}
formatNetAttribute( &gbr_metadata.m_NetlistMetadata );
emitDcode( pos_device, 3 );
}
void GERBER_PLOTTER::FlashPadTrapez( const VECTOR2I& aPadPos, const VECTOR2I* aCorners,
const EDA_ANGLE& aPadOrient, OUTLINE_MODE aTraceMode,
void* aData )
{
// polygon corners list
std::vector<VECTOR2I> cornerList = { aCorners[0], aCorners[1], aCorners[2], aCorners[3] };
// Draw the polygon and fill the interior as required
for( unsigned ii = 0; ii < 4; ii++ )
{
RotatePoint( cornerList[ii], aPadOrient );
cornerList[ii] += aPadPos;
}
// Close the polygon
cornerList.push_back( cornerList[0] );
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
GBR_METADATA metadata;
if( gbr_metadata )
metadata = *gbr_metadata;
if( aTraceMode == SKETCH )
{
PlotPoly( cornerList, FILL_T::NO_FILL, GetCurrentLineWidth(), &metadata );
return;
}
// Plot a filled polygon:
#ifdef GBR_USE_MACROS_FOR_TRAPEZOID
if( !m_gerberDisableApertMacros )
#endif
{
m_hasApertureOutline4P = true;
VECTOR2D pos_dev = userToDeviceCoordinates( aPadPos );
// polygon corners list
std::vector<VECTOR2I> corners = { aCorners[0], aCorners[1], aCorners[2], aCorners[3] };
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
selectAperture( corners, aPadOrient, APERTURE::APER_MACRO_OUTLINE4P, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_dev, 3 );
return;
}
PlotGerberRegion( cornerList, &metadata );
}
void GERBER_PLOTTER::FlashRegularPolygon( const VECTOR2I& aShapePos, int aDiameter,
int aCornerCount, const EDA_ANGLE& aOrient,
OUTLINE_MODE aTraceMode, void* aData )
{
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
GBR_METADATA metadata;
if( gbr_metadata )
metadata = *gbr_metadata;
if( aTraceMode == SKETCH )
{
// Build the polygon:
std::vector<VECTOR2I> cornerList;
EDA_ANGLE angle_delta = ANGLE_360 / aCornerCount;
for( int ii = 0; ii < aCornerCount; ii++ )
{
EDA_ANGLE rot = aOrient + ( angle_delta * ii );
VECTOR2I vertice( aDiameter / 2, 0 );
RotatePoint( vertice, rot );
vertice += aShapePos;
cornerList.push_back( vertice );
}
cornerList.push_back( cornerList[0] ); // Close the shape
PlotPoly( cornerList, FILL_T::NO_FILL, GetCurrentLineWidth(), &gbr_metadata );
}
else
{
VECTOR2D pos_dev = userToDeviceCoordinates( aShapePos );
int aperture_attrib = gbr_metadata ? gbr_metadata->GetApertureAttrib() : 0;
APERTURE::APERTURE_TYPE apert_type =
(APERTURE::APERTURE_TYPE)(APERTURE::AT_REGULAR_POLY3 + aCornerCount - 3);
selectAperture( aDiameter, aOrient, apert_type, aperture_attrib );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
emitDcode( pos_dev, 3 );
}
}
void GERBER_PLOTTER::Text( const VECTOR2I& aPos,
const COLOR4D& aColor,
const wxString& aText,
const EDA_ANGLE& aOrient,
const VECTOR2I& aSize,
enum GR_TEXT_H_ALIGN_T aH_justify,
enum GR_TEXT_V_ALIGN_T aV_justify,
int aWidth,
bool aItalic,
bool aBold,
bool aMultilineAllowed,
KIFONT::FONT* aFont,
const KIFONT::METRICS& aFontMetrics,
void* aData )
{
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
PLOTTER::Text( aPos, aColor, aText, aOrient, aSize, aH_justify, aV_justify, aWidth,
aItalic, aBold, aMultilineAllowed, aFont, aFontMetrics, aData );
}
void GERBER_PLOTTER::PlotText( const VECTOR2I& aPos,
const COLOR4D& aColor,
const wxString& aText,
const TEXT_ATTRIBUTES& aAttributes,
KIFONT::FONT* aFont,
const KIFONT::METRICS& aFontMetrics,
void* aData )
{
GBR_METADATA* gbr_metadata = static_cast<GBR_METADATA*>( aData );
if( gbr_metadata )
formatNetAttribute( &gbr_metadata->m_NetlistMetadata );
PLOTTER::PlotText( aPos, aColor, aText, aAttributes, aFont, aFontMetrics, aData );
}
void GERBER_PLOTTER::SetLayerPolarity( bool aPositive )
{
if( aPositive )
fprintf( m_outputFile, "%%LPD*%%\n" );
else
fprintf( m_outputFile, "%%LPC*%%\n" );
}
bool APER_MACRO_FREEPOLY::IsSamePoly( const std::vector<VECTOR2I>& aPolygon ) const
{
return polyCompare( m_Corners, aPolygon );
}
void APER_MACRO_FREEPOLY::Format( FILE * aOutput, double aIu2GbrMacroUnit )
{
// Write aperture header
fprintf( aOutput, "%%AM%s%d*\n", AM_FREEPOLY_BASENAME, m_Id );
fprintf( aOutput, "4,1,%d,", (int)m_Corners.size() );
// Insert a newline after curr_line_count_max coordinates.
int curr_line_corner_count = 0;
const int curr_line_count_max = 20; // <= 0 to disable newlines
for( size_t ii = 0; ii <= m_Corners.size(); ii++ )
{
int jj = ii;
if( ii >= m_Corners.size() )
jj = 0;
// Note: parameter values are always mm or inches
fprintf( aOutput, "%#f,%#f,",
m_Corners[jj].x * aIu2GbrMacroUnit, -m_Corners[jj].y * aIu2GbrMacroUnit );
if( curr_line_count_max >= 0 && ++curr_line_corner_count >= curr_line_count_max )
{
fprintf( aOutput, "\n" );
curr_line_corner_count = 0;
}
}
// output rotation parameter
fputs( "$1*%\n", aOutput );
}
void APER_MACRO_FREEPOLY_LIST::Format( FILE * aOutput, double aIu2GbrMacroUnit )
{
for( int idx = 0; idx < AmCount(); idx++ )
m_AMList[idx].Format( aOutput, aIu2GbrMacroUnit );
}
void APER_MACRO_FREEPOLY_LIST::Append( const std::vector<VECTOR2I>& aPolygon )
{
m_AMList.emplace_back( aPolygon, AmCount() );
}
int APER_MACRO_FREEPOLY_LIST::FindAm( const std::vector<VECTOR2I>& aPolygon ) const
{
for( int idx = 0; idx < AmCount(); idx++ )
{
if( m_AMList[idx].IsSamePoly( aPolygon ) )
return idx;
}
return -1;
}