7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2025-02-18 22:19:53 +00:00
kicad/eeschema/sim/sim_model_source.cpp
Seth Hillbrand 0b2d4d4879 Revise Copyright statement to align with TLF
Recommendation is to avoid using the year nomenclature as this
information is already encoded in the git repo.  Avoids needing to
repeatly update.

Also updates AUTHORS.txt from current repo with contributor names
2025-01-01 14:12:04 -08:00

1236 lines
43 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sim/sim_model_source.h>
#include <fmt/core.h>
#include <pegtl.hpp>
#include <pegtl/contrib/parse_tree.hpp>
namespace SIM_MODEL_SOURCE_PARSER
{
using namespace SIM_MODEL_SOURCE_GRAMMAR;
template <typename Rule> struct pwlValuesSelector : std::false_type {};
template <> struct pwlValuesSelector<number<SIM_VALUE::TYPE_FLOAT, NOTATION::SI>>
: std::true_type {};
}
std::string SPICE_GENERATOR_SOURCE::ModelLine( const SPICE_ITEM& aItem ) const
{
return "";
}
std::string SPICE_GENERATOR_SOURCE::TunerCommand( const SPICE_ITEM& aItem, double aValue ) const
{
std::string result = "";
switch( aItem.model->GetType() )
{
case SIM_MODEL::TYPE::V: // VDC/IDC: it is clear which parameter should be used
case SIM_MODEL::TYPE::I:
result = fmt::format( "alter @{}={:g}", aItem.model->SpiceGenerator().ItemName( aItem ),
aValue );
break;
default: break; // other sources: unclear which parameter the user wants
}
return result;
}
std::string SPICE_GENERATOR_SOURCE::ItemLine( const SPICE_ITEM& aItem ) const
{
SPICE_ITEM item = aItem;
std::string ac = "";
std::string dc = "";
if( const SIM_MODEL::PARAM* ac_param = m_model.FindParam( "ac" ) )
ac = SIM_VALUE::ToSpice( ac_param->value );
if( const SIM_MODEL::PARAM* dc_param = m_model.FindParam( "dc" ) )
dc = SIM_VALUE::ToSpice( dc_param->value );
bool emptyLine = true;
item.modelName = "";
// @FIXME
// the keyword "DC" refers to both offset of a sine source, and value for DC analysis
// Because of this, both values are always equal in a sine source.
//
// suggestion: rename the sine parameter from "DC" to "offset"
if( dc != "" )
{
emptyLine = false;
item.modelName += fmt::format( "DC {} ", dc );
}
if( m_model.GetSpiceInfo().functionName != ""
&& m_model.GetType() != SIM_MODEL::TYPE::V // DC-only sources are already processed
&& m_model.GetType() != SIM_MODEL::TYPE::I )
{
std::string args = "";
switch( m_model.GetType() )
{
case SIM_MODEL::TYPE::V_PWL:
case SIM_MODEL::TYPE::I_PWL:
{
tao::pegtl::string_input<> in( m_model.GetParam( 0 ).value, "from_content" );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
root = tao::pegtl::parse_tree::parse<SIM_MODEL_SOURCE_PARSER::pwlValuesGrammar,
SIM_MODEL_SOURCE_PARSER::pwlValuesSelector>
( in );
}
catch( const tao::pegtl::parse_error& )
{
break;
}
if( root )
{
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_SOURCE_PARSER::number<SIM_VALUE::TYPE_FLOAT,
SIM_VALUE::NOTATION::SI>>() )
{
args.append( SIM_VALUE::ToSpice( node->string() ) + " " );
}
}
}
break;
}
case SIM_MODEL::TYPE::V_WHITENOISE:
case SIM_MODEL::TYPE::I_WHITENOISE:
args.append( getParamValueString( "rms", "0" ) + " " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( "0 0 0 0 0 " );
break;
case SIM_MODEL::TYPE::V_PINKNOISE:
case SIM_MODEL::TYPE::I_PINKNOISE:
args.append( "0 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "slope", "0" ) + " " );
args.append( getParamValueString( "rms", "0" ) + " " );
args.append( "0 0 0 " );
break;
case SIM_MODEL::TYPE::V_BURSTNOISE:
case SIM_MODEL::TYPE::I_BURSTNOISE:
args.append( "0 0 0 0 " );
args.append( getParamValueString( "ampl", "0" ) + " " );
args.append( getParamValueString( "tcapt", "0" ) + " " );
args.append( getParamValueString( "temit", "0" ) + " " );
break;
case SIM_MODEL::TYPE::V_RANDUNIFORM:
case SIM_MODEL::TYPE::I_RANDUNIFORM:
{
args.append( "1 " );
args.append( getParamValueString( "ts", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "range", "1" ) + " " );
args.append( getParamValueString( "offset", "0" ) + " " );
break;
}
case SIM_MODEL::TYPE::V_RANDGAUSSIAN:
case SIM_MODEL::TYPE::I_RANDGAUSSIAN:
args.append( "2 " );
args.append( getParamValueString( "ts", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "stddev", "1" ) + " " );
args.append( getParamValueString( "mean", "0" ) + " " );
break;
case SIM_MODEL::TYPE::V_RANDEXP:
case SIM_MODEL::TYPE::I_RANDEXP:
args.append( "3 " );
args.append( getParamValueString( "ts", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "mean", "1" ) + " " );
args.append( getParamValueString( "offset", "0" ) + " " );
break;
case SIM_MODEL::TYPE::V_RANDPOISSON:
case SIM_MODEL::TYPE::I_RANDPOISSON:
args.append( "4 " );
args.append( getParamValueString( "ts", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "lambda", "1" ) + " " );
args.append( getParamValueString( "offset", "0" ) + " " );
break;
default:
for( int ii = 0; ii < m_model.GetParamCount(); ++ii )
{
const SIM_MODEL::PARAM& param = m_model.GetParam( ii );
if( ac != "" && ( param.Matches( "ac" ) || param.Matches( "ph" ) ) )
continue;
std::string argStr = SIM_VALUE::ToSpice( param.value );
if( argStr != "" )
args.append( argStr + " " );
}
break;
}
emptyLine = false;
item.modelName += fmt::format( "{}( {}) ", m_model.GetSpiceInfo().functionName, args );
}
else
{
switch( m_model.GetType() )
case SIM_MODEL::TYPE::V_VCL:
case SIM_MODEL::TYPE::I_VCL:
{
item.modelName += fmt::format( "{} ", getParamValueString( "gain", "1.0" ) );
emptyLine = false;
break;
case SIM_MODEL::TYPE::V_CCL:
case SIM_MODEL::TYPE::I_CCL:
item.modelName += fmt::format( "{} {} ",
getParamValueString( "control", "V?" ),
getParamValueString( "gain", "1.0" ) );
emptyLine = false;
break;
default:
break;
}
}
if( ac != "" )
{
std::string ph = "";
if( const SIM_MODEL::PARAM* ph_param = m_model.FindParam( "ph" ) )
ph = SIM_VALUE::ToSpice( ph_param->value );
emptyLine = false;
item.modelName += fmt::format( "AC {} {} ", ac, ph );
}
std::string portnum = "";
if( const SIM_MODEL::PARAM* portnum_param = m_model.FindParam( "portnum" ) )
portnum = SIM_VALUE::ToSpice( portnum_param->value );
if( portnum != "" )
{
item.modelName += fmt::format( "portnum {} ", portnum );
std::string z0 = "";
if( const SIM_MODEL::PARAM* z0_param = m_model.FindParam( "z0" ) )
z0 = SIM_VALUE::ToSpice( z0_param->value );
if( z0 != "" )
item.modelName += fmt::format( "z0 {} ", z0 );
}
if( emptyLine )
{
item.modelName = SIM_VALUE::ToSpice( m_model.GetParam( 0 ).value );
}
return SPICE_GENERATOR::ItemLine( item );
}
std::string SPICE_GENERATOR_SOURCE::getParamValueString( const std::string& aParamName,
const std::string& aDefaultValue ) const
{
std::string result = "";
if ( m_model.FindParam( aParamName ) )
result = SIM_VALUE::ToSpice( m_model.FindParam( aParamName )->value );
if( result == "" )
result = aDefaultValue;
return result;
}
SIM_MODEL_SOURCE::SIM_MODEL_SOURCE( TYPE aType ) :
SIM_MODEL( aType, std::make_unique<SPICE_GENERATOR_SOURCE>( *this ),
std::make_unique<SIM_MODEL_SOURCE_SERIALIZER>( *this ) )
{
for( const SIM_MODEL::PARAM::INFO& paramInfo : makeParamInfos( aType ) )
AddParam( paramInfo );
}
void SIM_MODEL_SOURCE::doSetParamValue( int aParamIndex, const std::string& aValue )
{
// Sources are special. All preceding parameter values must be filled. If they are not, fill
// them out automatically. If a value is nulled, delete everything after it.
if( aValue.empty() )
{
for( int paramIndex = aParamIndex; paramIndex < GetParamCount(); ++paramIndex )
{
m_params.at( aParamIndex ).value = "";
}
}
else
{
for( int paramIndex = 0; paramIndex < aParamIndex; ++paramIndex )
{
if( GetParam( paramIndex ).value == "" )
{
double dummy;
wxString defaultValue = m_params.at( aParamIndex ).info.defaultValue;
if( !defaultValue.ToDouble( &dummy ) )
defaultValue = wxT( "0" );
m_params.at( aParamIndex ).value = defaultValue;
SIM_MODEL::SetParamValue( paramIndex, defaultValue.ToStdString() );
}
}
}
return SIM_MODEL::doSetParamValue( aParamIndex, aValue );
}
const std::vector<SIM_MODEL::PARAM::INFO>& SIM_MODEL_SOURCE::makeParamInfos( TYPE aType )
{
static std::vector<PARAM::INFO> vdc = makeDcParamInfos( "y", "V" );
static std::vector<PARAM::INFO> idc = makeDcParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vsin = makeSinParamInfos( "y", "V" );
static std::vector<PARAM::INFO> isin = makeSinParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vpulse = makePulseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> ipulse = makePulseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vexp = makeExpParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iexp = makeExpParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vam = makeAMParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iam = makeAMParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vsffm = makeSFFMParamInfos( "y", "V" );
static std::vector<PARAM::INFO> isffm = makeSFFMParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vcvs = makeVcParamInfos( "" );
static std::vector<PARAM::INFO> ccvs = makeCcParamInfos( "ohm" );
static std::vector<PARAM::INFO> vpwl = makePwlParamInfos( "y", "Voltage", "V" );
static std::vector<PARAM::INFO> vccs = makeVcParamInfos( "S" );
static std::vector<PARAM::INFO> cccs = makeCcParamInfos( "" );
static std::vector<PARAM::INFO> ipwl = makePwlParamInfos( "y", "Current", "A" );
static std::vector<PARAM::INFO> vwhitenoise = makeWhiteNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iwhitenoise = makeWhiteNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vpinknoise = makePinkNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> ipinknoise = makePinkNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vburstnoise = makeBurstNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iburstnoise = makeBurstNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomuniform = makeRandomUniformParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomuniform = makeRandomUniformParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomnormal = makeRandomNormalParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomnormal = makeRandomNormalParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomexp = makeRandomExpParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomexp = makeRandomExpParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandompoisson = makeRandomPoissonParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandompoisson = makeRandomPoissonParamInfos( "y", "A" );
switch( aType )
{
case TYPE::V: return vdc;
case TYPE::I: return idc;
case TYPE::V_SIN: return vsin;
case TYPE::I_SIN: return isin;
case TYPE::V_PULSE: return vpulse;
case TYPE::I_PULSE: return ipulse;
case TYPE::V_EXP: return vexp;
case TYPE::I_EXP: return iexp;
case TYPE::V_AM: return vam;
case TYPE::I_AM: return iam;
case TYPE::V_SFFM: return vsffm;
case TYPE::I_SFFM: return isffm;
case TYPE::V_VCL: return vcvs;
case TYPE::V_CCL: return ccvs;
case TYPE::V_PWL: return vpwl;
case TYPE::I_VCL: return vccs;
case TYPE::I_CCL: return cccs;
case TYPE::I_PWL: return ipwl;
case TYPE::V_WHITENOISE: return vwhitenoise;
case TYPE::I_WHITENOISE: return iwhitenoise;
case TYPE::V_PINKNOISE: return vpinknoise;
case TYPE::I_PINKNOISE: return ipinknoise;
case TYPE::V_BURSTNOISE: return vburstnoise;
case TYPE::I_BURSTNOISE: return iburstnoise;
case TYPE::V_RANDUNIFORM: return vrandomuniform;
case TYPE::I_RANDUNIFORM: return irandomuniform;
case TYPE::V_RANDGAUSSIAN: return vrandomnormal;
case TYPE::I_RANDGAUSSIAN: return irandomnormal;
case TYPE::V_RANDEXP: return vrandomexp;
case TYPE::I_RANDEXP: return irandomexp;
case TYPE::V_RANDPOISSON: return vrandompoisson;
case TYPE::I_RANDPOISSON: return irandompoisson;
default:
wxFAIL_MSG( "Unhandled SIM_MODEL type in SIM_MODEL_SOURCE" );
static std::vector<SIM_MODEL::PARAM::INFO> empty;
return empty;
}
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeDcParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "DC value";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeSinParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "DC offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "f";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1/tstop";
paramInfo.description = "Frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "theta";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "1/s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Damping factor";
paramInfos.push_back( paramInfo );
paramInfo.name = "phase";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Phase";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePulseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = aPrefix + "1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Initial value";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix + "2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Pulsed value";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "tr";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Rise time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tf";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Fall time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tw"; // Ngspice calls it "pw".
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstop";
paramInfo.description = "Pulse width";
paramInfos.push_back( paramInfo );
paramInfo.name = "per";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstop";
paramInfo.description = "Period";
paramInfos.push_back( paramInfo );
paramInfo.name = "np";
paramInfo.type = SIM_VALUE::TYPE_INT;
paramInfo.unit = "";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Number of pulses";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeExpParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = aPrefix + "1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Initial value";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix + "2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Pulsed value";
paramInfos.push_back( paramInfo );
paramInfo.name = "td1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Rise delay time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tau1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Rise time constant";
paramInfos.push_back( paramInfo );
paramInfo.name = "td2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "td1+tstep";
paramInfo.description = "Fall delay time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tau2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Fall time constant";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeAMParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "vo";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Overall offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "vmo";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulation signal offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "vma";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulation signal amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "fm";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "5/tstop";
paramInfo.description = "Modulation signal frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "fc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "500/tstop";
paramInfo.description = "Carrier signal frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Overall delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "phasem";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Modulation signal phase";
paramInfos.push_back( paramInfo );
paramInfo.name = "phasec";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Carrier signal phase";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeSFFMParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "vo";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "DC offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "va";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "fm";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "5/tstop";
paramInfo.description = "Modulating frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "mdi";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulation index";
paramInfos.push_back( paramInfo );
paramInfo.name = "fc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "500/tstop";
paramInfo.description = "Carrier frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "phasem";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Modulating signal phase";
paramInfos.push_back( paramInfo );
paramInfo.name = "phasec";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Carrier signal phase";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeCcParamInfos( const std::string& aGainUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "gain";
paramInfo.id = 1;
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aGainUnit;
paramInfo.description = "Gain";
paramInfos.push_back( paramInfo );
paramInfo.name = "control";
paramInfo.id = 2;
paramInfo.type = SIM_VALUE::TYPE_STRING;
paramInfo.unit = "";
paramInfo.description = "Controlling voltage source";
paramInfos.push_back( paramInfo );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeVcParamInfos( const std::string& aGainUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "gain";
paramInfo.id = 1;
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aGainUnit;
paramInfo.description = "Gain";
paramInfos.push_back( paramInfo );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePwlParamInfos( const std::string& aPrefix,
const std::string& aQuantity,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "pwl";
paramInfo.type = SIM_VALUE::TYPE_STRING;
paramInfo.unit = "s," + aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = aUnit == "V" ? "Time-voltage points" : "Time-current points";
paramInfos.push_back( paramInfo );
// TODO: Ngspice doesn't support "td" and "r" for current sources, so let's disable that for
// now.
/*paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = aUnit == "V" ? "Time-voltage points" : "Time-current points";
paramInfo.isSpiceInstanceParam = true;
paramInfos.push_back( paramInfo );
paramInfo.name = "repeat";
paramInfo.type = SIM_VALUE::TYPE_BOOL;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Repeat forever";
paramInfo.isSpiceInstanceParam = true;
paramInfo.spiceInstanceName = "r";
paramInfos.push_back( paramInfo );*/
/*paramInfo.name = "t";
paramInfo.type = SIM_VALUE::TYPE_FLOAT_VECTOR;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Time vector";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix;
paramInfo.type = SIM_VALUE::TYPE_FLOAT_VECTOR;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = aQuantity + " vector";
paramInfos.push_back( paramInfo );
paramInfo.name = "repeat";
paramInfo.type = SIM_VALUE::TYPE_BOOL;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Repeat forever";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );*/
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeWhiteNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "rms";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "White noise RMS amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePinkNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "rms";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "1/f noise RMS amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "slope";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "1/f noise exponent";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeBurstNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "tcapt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise trap capture time";
paramInfos.push_back( paramInfo );
paramInfo.name = "temit";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise trap emission time";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomUniformParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ts";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Individual voltage duration";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "range";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Range";
paramInfos.push_back( paramInfo );
paramInfo.name = "offset";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Offset";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomNormalParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ts";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Individual voltage duration";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "stddev";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Standard deviation";
paramInfos.push_back( paramInfo );
paramInfo.name = "mean";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Mean";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomExpParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ts";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Individual voltage duration";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "mean";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Mean";
paramInfos.push_back( paramInfo );
paramInfo.name = "offset";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Offset";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomPoissonParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ts";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Individual voltage duration";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "lambda";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Lambda";
paramInfos.push_back( paramInfo );
paramInfo.name = "offset";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Offset";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
void SIM_MODEL_SOURCE::appendAcParamInfos( std::vector<PARAM::INFO>& aParamInfos, const std::string& aUnit )
{
PARAM::INFO paramInfo;
paramInfo.name = "ac";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::AC;
paramInfo.defaultValue = "0";
paramInfo.description = "AC magnitude";
aParamInfos.push_back( paramInfo );
paramInfo.name = "ph";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::AC;
paramInfo.defaultValue = "0";
paramInfo.description = "AC phase";
aParamInfos.push_back( paramInfo );
}
void SIM_MODEL_SOURCE::appendSpParamInfos( std::vector<PARAM::INFO>& aParamInfos,
const std::string& aUnit )
{
PARAM::INFO paramInfo;
if( !strcmp( aUnit.c_str(), "V" ) )
{
paramInfo.name = "portnum";
paramInfo.type = SIM_VALUE::TYPE_INT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::S_PARAM;
paramInfo.defaultValue = "";
paramInfo.description = "Port number";
aParamInfos.push_back( paramInfo );
paramInfo.name = "z0";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Ohm";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::S_PARAM;
paramInfo.defaultValue = "";
paramInfo.description = "Internal impedance";
aParamInfos.push_back( paramInfo );
}
}
std::vector<std::string> SIM_MODEL_SOURCE::GetPinNames() const
{
if( GetDeviceType() == SIM_MODEL::DEVICE_T::E || GetDeviceType() == SIM_MODEL::DEVICE_T::G )
return { "+", "-", "C+", "C-" };
else
return { "+", "-" };
}
const SIM_MODEL::PARAM* SIM_MODEL_SOURCE::GetTunerParam() const
{
switch( GetType() )
{
case SIM_MODEL::TYPE::V: // VDC/IDC: it is clear which parameter should be used
case SIM_MODEL::TYPE::I: return &GetParam( 0 ); break;
default: break; // other sources: unclear which parameter the user wants
}
return nullptr;
}