7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2024-11-28 00:31:20 +00:00
kicad/libs/kimath/include/geometry/geometry_utils.h
John Beard 3f131e2011 Abstract REFERENCE_IMAGE to a separate class
Break the non-PCB-specfic parts of PCB_REFERENCE_IMAGE out
to a common REFERENCE_IMAGE class, which is then composed into
the PCB_REFERENCE_IMAGE. This will make it easier to bring the
transform origin logic to eeschema without repetition.
2024-09-30 10:20:20 +01:00

227 lines
7.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file geometry_utils.h
* @brief a few functions useful in geometry calculations.
*/
#pragma once
#include <algorithm>
#include <math.h> // for copysign
#include <stdlib.h> // for abs
#include <math/box2.h>
#include <geometry/eda_angle.h>
/**
* @return the number of segments to approximate a arc by segments
* with a given max error (this number is >= 1)
* @param aRadius is the radius od the circle or arc
* @param aErrorMax is the max error
* This is the max distance between the middle of a segment and the circle.
* @param aArcAngleDegree is the arc angle
*/
int GetArcToSegmentCount( int aRadius, int aErrorMax, const EDA_ANGLE& aArcAngle );
/**
* @return the radius diffence of the circle defined by segments inside the circle
* and the radius of the circle tangent to the middle of segments (defined by
* segments outside this circle)
* @param aInnerCircleRadius is the radius of the circle tangent to the middle
* of segments
* @param aSegCount is the seg count to approximate the circle
*/
int CircleToEndSegmentDeltaRadius( int aInnerCircleRadius, int aSegCount );
/**
* When creating polygons to create a clearance polygonal area, the polygon must
* be same or bigger than the original shape.
* Polygons are bigger if the original shape has arcs (round rectangles, ovals,
* circles...). However, when building the solder mask layer modifying the shapes
* when converting them to polygons is not acceptable (the modification can break
* calculations).
* So one can disable the shape expansion within a particular scope by allocating
* a DISABLE_ARC_CORRECTION.
*/
class DISABLE_ARC_RADIUS_CORRECTION
{
public:
DISABLE_ARC_RADIUS_CORRECTION();
~DISABLE_ARC_RADIUS_CORRECTION();
};
/**
* @return the radius correction to approximate a circle.
* @param aMaxError is the same error value used to calculate the number of segments.
*
* When creating a polygon from a circle, the polygon is inside the circle.
* Only corners are on the circle.
* This is incorrect when building clearance areas of circles, that need to build
* the equivalent polygon outside the circle.
*/
int GetCircleToPolyCorrection( int aMaxError );
/**
* Snap a vector onto the nearest 0, 45 or 90 degree line.
*
* The magnitude of the vector is NOT kept, instead the coordinates are
* set equal (and/or opposite) or to zero as needed. The effect of this is
* that if the starting vector is on a square grid, the resulting snapped
* vector will still be on the same grid.
* @param a vector to be snapped
* @return the snapped vector
*/
template<typename T>
VECTOR2<T> GetVectorSnapped45( const VECTOR2<T>& aVec, bool only45 = false )
{
using ext_type = typename VECTOR2<T>::extended_type;
auto newVec = aVec;
const VECTOR2<T> absVec{ std::abs( aVec.x ), std::abs( aVec.y ) };
if( !only45 && absVec.x > ext_type( absVec.y ) * 2 )
{
// snap along x-axis
newVec.y = 0;
}
else if( !only45 && absVec.y > ext_type( absVec.x ) * 2 )
{
// snap onto y-axis
newVec.x = 0;
}
else if( absVec.x > absVec.y )
{
// snap away from x-axis towards 45
newVec.y = std::copysign( aVec.x, aVec.y );
}
else
{
// snap away from y-axis towards 45
newVec.x = std::copysign( aVec.y, aVec.x );
}
return newVec;
}
/**
* Clamps a vector to values that can be negated, respecting numeric limits
* of coordinates data type with specified padding.
*
* Numeric limits are (-2^31 + 1) to (2^31 - 1).
*
* Takes care of rounding in case of floating point to integer conversion.
*
* @param aCoord - vector to clamp.
* @param aPadding - padding from the limits. Must not be negative.
* @return clamped vector.
*/
template <typename in_type, typename ret_type = in_type, typename pad_type = unsigned int,
typename = typename std::enable_if<std::is_unsigned<pad_type>::value>::type>
VECTOR2<ret_type> GetClampedCoords( const VECTOR2<in_type>& aCoords, pad_type aPadding = 1u )
{
typedef std::numeric_limits<int32_t> coord_limits;
in_type x = aCoords.x;
in_type y = aCoords.y;
if constexpr( !std::is_floating_point_v<in_type> )
{
int64_t max = static_cast<int64_t>( coord_limits::max() ) - aPadding;
int64_t min = -max;
x = std::clamp<int64_t>( static_cast<int64_t>( x ), min, max );
y = std::clamp<int64_t>( static_cast<int64_t>( y ), min, max );
}
else
{
double max = static_cast<double>( coord_limits::max() ) - aPadding;
double min = -max;
x = std::clamp<double>( static_cast<double>( x ), min, max );
y = std::clamp<double>( static_cast<double>( y ), min, max );
}
if constexpr( !std::is_integral_v<in_type> && std::is_integral_v<ret_type> )
{
return VECTOR2<ret_type>( KiROUND<in_type, ret_type>( x, true ),
KiROUND<in_type, ret_type>( y, true ) );
}
return VECTOR2<ret_type>( x, y );
}
/**
* Check if both coordinates of a vector are within the limits of the integer type.
*/
template <typename T>
inline bool IsVec2SafeXY( const VECTOR2<T>& aVec )
{
constexpr T min = std::numeric_limits<int>::min();
constexpr T max = std::numeric_limits<int>::max();
return aVec.x > min && aVec.x < max && aVec.y > min && aVec.y < max;
}
/**
* Test if any part of a line falls within the bounds of a rectangle.
*
* Please note that this is only accurate for lines that are one pixel wide.
*
* @param aClipBox - The rectangle to test.
* @param x1 - X coordinate of one end of a line.
* @param y1 - Y coordinate of one end of a line.
* @param x2 - X coordinate of the other end of a line.
* @param y2 - Y coordinate of the other end of a line.
*
* @return - False if any part of the line lies within the rectangle.
*/
bool ClipLine( const BOX2I *aClipBox, int &x1, int &y1, int &x2, int &y2 );
namespace KIGEOM
{
/**
* Perform a point-to-box hit test.
*
* @param aHitPoint - The point that is hitting the box
* @param aHittee - The box that is tested for hit.
* @param aAccuracy - The accuracy of the hit test.
*/
bool BoxHitTest( const VECTOR2I& aHitPoint, const BOX2I& aHittee, int aAccuracy );
/**
* Perform a box-to-box hit test.
*
* @param aHitter - The box that is either hitting or containing the hittee.
* @param aHittee - The box that is either being hit or contained by the hitter
* (this is possibly an object's bounding box).
* @param aHitteeContained - True if the hittee is tested for total containment,
* false if it is tested for intersection.
* @param aAccuracy - The accuracy of the hit test.
*/
bool BoxHitTest( const BOX2I& aHitter, const BOX2I& aHittee, bool aHitteeContained, int aAccuracy );
}; // namespace KIGEOM