7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2024-11-28 00:31:20 +00:00
kicad/libs/kimath/include/math/util.h
John Beard 49b8a5ce74 VECTOR2, BOX2: Add constexpr to many functions
In the core geometric types, this can provide some
useful optimisation opportunites.

As most trig functions and std::sqrt aren't constexpr
until C++26, anything that involves a vector length
can't be constexpr yet. But std::clamp and, importantly,
KiROUND are, which does allow quite a bit. And squared
sizes do work, as they are just multiplies, so size
comparisons work too.

The floating point equals-with-epsilon function can't
be directly made constexpr until C++23 (unless std::abs
is replaced with manual code, but that may then forgo
the use of intrinsics at runtime). And they're probably
not important to have at compile-time.

Add a few tests with static_asserts to show/prove that
some non-trivial operations can be done at compile time,
for example BOX2 merging.
2024-09-11 22:35:35 +01:00

205 lines
5.7 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (c) 2005 Michael Niedermayer <michaelni@gmx.at>
* Copyright (C) CERN
* Copyright (C) 2021-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* The equals() method to compare two floating point values adapted from
* AlmostEqualRelativeAndAbs() on
* https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
* (C) Bruce Dawson subject to the Apache 2.0 license.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef UTIL_H
#define UTIL_H
#include <config.h>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <limits>
#include <typeinfo>
#include <type_traits>
/**
* Helper to avoid directly including wx/log.h for the templated functions in kimath
*/
void kimathLogDebug( const char* aFormatString, ... );
/**
* Workaround to avoid the empty-string conversion issue in wxWidgets
*/
void kimathLogOverflow( double v, const char* aTypeName );
// Suppress an annoying warning that the explicit rounding we do is not precise
#ifdef HAVE_WIMPLICIT_FLOAT_CONVERSION
_Pragma( "GCC diagnostic push" ) \
_Pragma( "GCC diagnostic ignored \"-Wimplicit-int-float-conversion\"" )
#endif
/**
* Perform a cast between numerical types. Will clamp the return value to numerical type limits.
*
* In Debug build an assert fires if will not fit into the return type.
*/
template <typename in_type = long long int, typename ret_type = int>
inline constexpr ret_type KiCheckedCast( in_type v )
{
if constexpr( std::is_same_v<in_type, long long int> && std::is_same_v<ret_type, int> )
{
if( v > std::numeric_limits<int>::max() )
{
kimathLogOverflow( double( v ), typeid( int ).name() );
return std::numeric_limits<int>::max();
}
else if( v < std::numeric_limits<int>::lowest() )
{
kimathLogOverflow( double( v ), typeid( int ).name() );
return std::numeric_limits<int>::lowest();
}
return int( v );
}
else
{
return v;
}
}
/**
* Round a floating point number to an integer using "round halfway cases away from zero".
*
* In Debug build an assert fires if will not fit into the return type.
*/
template <typename fp_type, typename ret_type = int>
constexpr ret_type KiROUND( fp_type v, bool aQuiet = false )
{
using max_ret = long long int;
fp_type ret = v < 0 ? v - 0.5 : v + 0.5;
if( ret > std::numeric_limits<ret_type>::max() )
{
if( !aQuiet )
{
kimathLogOverflow( double( v ), typeid( ret_type ).name() );
}
return std::numeric_limits<ret_type>::max() - 1;
}
else if( ret < std::numeric_limits<ret_type>::lowest() )
{
if( !aQuiet )
{
kimathLogOverflow( double( v ), typeid( ret_type ).name() );
}
if( std::numeric_limits<ret_type>::is_signed )
return std::numeric_limits<ret_type>::lowest() + 1;
else
return 0;
}
#if __cplusplus >= 202302L // isnan is not constexpr until C++23
else if constexpr( std::is_floating_point_v<fp_type> )
{
if( std::isnan( v ) )
{
if( !aQuiet )
{
kimathLogOverflow( double( v ), typeid( ret_type ).name() );
}
return 0;
}
}
#endif
return ret_type( max_ret( ret ) );
}
#ifdef HAVE_WIMPLICIT_FLOAT_CONVERSION
_Pragma( "GCC diagnostic pop" )
#endif
/**
* Scale a number (value) by rational (numerator/denominator). Numerator must be <= denominator.
*/
template <typename T>
T rescale( T aNumerator, T aValue, T aDenominator )
{
return aNumerator * aValue / aDenominator;
}
template <typename T>
constexpr int sign( T val )
{
return ( T( 0 ) < val) - ( val < T( 0 ) );
}
// explicit specializations for integer types, taking care of overflow.
template <>
int rescale( int aNumerator, int aValue, int aDenominator );
template <>
int64_t rescale( int64_t aNumerator, int64_t aValue, int64_t aDenominator );
/**
* Template to compare two floating point values for equality within a required epsilon.
*
* @param aFirst value to compare.
* @param aSecond value to compare.
* @param aEpsilon allowed error.
* @return true if the values considered equal within the specified epsilon, otherwise false.
*/
template <class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
equals( T aFirst, T aSecond, T aEpsilon = std::numeric_limits<T>::epsilon() )
{
const T diff = std::abs( aFirst - aSecond );
if( diff < aEpsilon )
{
return true;
}
aFirst = std::abs( aFirst );
aSecond = std::abs( aSecond );
T largest = aFirst > aSecond ? aFirst : aSecond;
if( diff <= largest * aEpsilon )
{
return true;
}
return false;
}
#endif // UTIL_H