kicad/pcb_calculator/transline/stripline.cpp

183 lines
6.8 KiB
C++

/*
* stripline.cpp - stripline class definition
*
* Copyright (C) 2011 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
* Modifications 2018 for Kicad: Jean-Pierre Charras
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "stripline.h"
#include "units.h"
// const to convert a attenuation / loss from log to decibel
const double LOG2DB = 20.0 / log( 10.0 );
STRIPLINE::STRIPLINE() : TRANSLINE()
{
m_Name = "StripLine";
Init();
}
// -------------------------------------------------------------------
// calculate characteristic impedance and conductor loss (in log/meter)
double STRIPLINE::lineImpedance( double height, double& ac )
{
double ZL;
double hmt = height - m_parameters[T_PRM];
ac = sqrt( m_parameters[FREQUENCY_PRM] / m_parameters[SIGMA_PRM] / 17.2 );
if( m_parameters[PHYS_WIDTH_PRM] / hmt >= 0.35 )
{
ZL = m_parameters[PHYS_WIDTH_PRM]
+ ( 2.0 * height * log( ( 2.0 * height - m_parameters[T_PRM] ) / hmt )
- m_parameters[T_PRM] * log( height * height / hmt / hmt - 1.0 ) )
/ M_PI;
ZL = ZF0 * hmt / sqrt( m_parameters[EPSILONR_PRM] ) / 4.0 / ZL;
ac *= 2.02e-6 * m_parameters[EPSILONR_PRM] * ZL / hmt;
ac *= 1.0 + 2.0 * m_parameters[PHYS_WIDTH_PRM] / hmt
+ ( height + m_parameters[T_PRM] ) / hmt / M_PI
* log( 2.0 * height / m_parameters[T_PRM] - 1.0 );
}
else
{
double tdw = m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM];
if( m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM] > 1.0 )
tdw = m_parameters[PHYS_WIDTH_PRM] / m_parameters[T_PRM];
double de = 1.0 + tdw / M_PI * ( 1.0 + log( 4.0 * M_PI / tdw ) ) + 0.236 * pow( tdw, 1.65 );
if( m_parameters[T_PRM] / m_parameters[PHYS_WIDTH_PRM] > 1.0 )
de *= m_parameters[T_PRM] / 2.0;
else
de *= m_parameters[PHYS_WIDTH_PRM] / 2.0;
ZL = ZF0 / 2.0 / M_PI / sqrt( m_parameters[EPSILONR_PRM] )
* log( 4.0 * height / M_PI / de );
ac *= 0.01141 / ZL / de;
ac *= de / height + 0.5 + tdw / 2.0 / M_PI + 0.5 / M_PI * log( 4.0 * M_PI / tdw )
+ 0.1947 * pow( tdw, 0.65 ) - 0.0767 * pow( tdw, 1.65 );
}
return ZL;
}
// -------------------------------------------------------------------
void STRIPLINE::calcAnalyze()
{
m_parameters[SKIN_DEPTH_PRM] = skin_depth();
m_parameters[EPSILON_EFF_PRM] = m_parameters[EPSILONR_PRM]; // no dispersion
double ac1, ac2;
double t = m_parameters[T_PRM];
double a = m_parameters[STRIPLINE_A_PRM];
double h = m_parameters[H_PRM];
m_parameters[Z0_PRM] = 2.0
/ ( 1.0 / lineImpedance( 2.0 * a + t, ac1 )
+ 1.0 / lineImpedance( 2.0 * ( h - a ) - t, ac2 ) );
m_parameters[LOSS_CONDUCTOR_PRM] = LOG2DB * m_parameters[PHYS_LEN_PRM] * ( ac1 + ac2 );
m_parameters[LOSS_DIELECTRIC_PRM] = LOG2DB * m_parameters[PHYS_LEN_PRM]
* ( M_PI / C0 ) * m_parameters[FREQUENCY_PRM]
* sqrt( m_parameters[EPSILONR_PRM] )
* m_parameters[TAND_PRM];
m_parameters[ANG_L_PRM] = 2.0 * M_PI * m_parameters[PHYS_LEN_PRM]
* sqrt( m_parameters[EPSILONR_PRM] ) * m_parameters[FREQUENCY_PRM]
/ C0; // in radians
}
void STRIPLINE::showAnalyze()
{
setProperty( Z0_PRM, m_parameters[Z0_PRM] );
setProperty( ANG_L_PRM, m_parameters[ANG_L_PRM] );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] < 0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_WARNING );
if( m_parameters[STRIPLINE_A_PRM] + m_parameters[T_PRM] >= m_parameters[H_PRM] )
{
setErrorLevel( STRIPLINE_A_PRM, TRANSLINE_WARNING );
setErrorLevel( T_PRM, TRANSLINE_WARNING );
setErrorLevel( H_PRM, TRANSLINE_WARNING );
setErrorLevel( Z0_PRM, TRANSLINE_ERROR );
}
}
void STRIPLINE::showSynthesize()
{
setProperty( PHYS_LEN_PRM, m_parameters[PHYS_LEN_PRM] );
setProperty( PHYS_WIDTH_PRM, m_parameters[PHYS_WIDTH_PRM] );
if( !std::isfinite( m_parameters[PHYS_LEN_PRM] ) || m_parameters[PHYS_LEN_PRM] < 0 )
setErrorLevel( PHYS_LEN_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[PHYS_WIDTH_PRM] ) || m_parameters[PHYS_WIDTH_PRM] < 0 )
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
if( !std::isfinite( m_parameters[Z0_PRM] ) || m_parameters[Z0_PRM] < 0 )
setErrorLevel( Z0_PRM, TRANSLINE_WARNING );
if( !std::isfinite( m_parameters[ANG_L_PRM] ) || m_parameters[ANG_L_PRM] < 0 )
setErrorLevel( ANG_L_PRM, TRANSLINE_WARNING );
if( m_parameters[STRIPLINE_A_PRM] + m_parameters[T_PRM] >= m_parameters[H_PRM] )
{
setErrorLevel( STRIPLINE_A_PRM, TRANSLINE_WARNING );
setErrorLevel( T_PRM, TRANSLINE_WARNING );
setErrorLevel( H_PRM, TRANSLINE_WARNING );
setErrorLevel( PHYS_WIDTH_PRM, TRANSLINE_ERROR );
}
}
// -------------------------------------------------------------------
void STRIPLINE::show_results()
{
setResult( 0, m_parameters[EPSILON_EFF_PRM], "" );
setResult( 1, m_parameters[LOSS_CONDUCTOR_PRM], "dB" );
setResult( 2, m_parameters[LOSS_DIELECTRIC_PRM], "dB" );
setResult( 3, m_parameters[SKIN_DEPTH_PRM] / UNIT_MICRON, "µm" );
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
void STRIPLINE::calcSynthesize()
{
minimizeZ0Error1D( &( m_parameters[PHYS_WIDTH_PRM] ) );
}