kicad/pcbnew/pcb_shape.cpp

1168 lines
35 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2024 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "pcb_shape.h"
#include <google/protobuf/any.pb.h>
#include <magic_enum.hpp>
#include <bitmaps.h>
#include <macros.h>
#include <pcb_edit_frame.h>
#include <board_design_settings.h>
#include <board.h>
#include <footprint.h>
#include <lset.h>
#include <pad.h>
#include <base_units.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_compound.h>
#include <geometry/point_types.h>
#include <geometry/shape_utils.h>
#include <pcb_painter.h>
#include <api/board/board_types.pb.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
PCB_SHAPE::PCB_SHAPE( BOARD_ITEM* aParent, KICAD_T aItemType, SHAPE_T aShapeType ) :
BOARD_CONNECTED_ITEM( aParent, aItemType ),
EDA_SHAPE( aShapeType, pcbIUScale.mmToIU( DEFAULT_LINE_WIDTH ), FILL_T::NO_FILL )
{
m_hasSolderMask = false;
}
PCB_SHAPE::PCB_SHAPE( BOARD_ITEM* aParent, SHAPE_T shapetype ) :
BOARD_CONNECTED_ITEM( aParent, PCB_SHAPE_T ),
EDA_SHAPE( shapetype, pcbIUScale.mmToIU( DEFAULT_LINE_WIDTH ), FILL_T::NO_FILL )
{
m_hasSolderMask = false;
}
PCB_SHAPE::~PCB_SHAPE()
{
}
void PCB_SHAPE::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::GraphicShape msg;
msg.mutable_id()->set_value( m_Uuid.AsStdString() );
msg.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) );
msg.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
msg.mutable_net()->mutable_code()->set_value( GetNetCode() );
msg.mutable_net()->set_name( GetNetname() );
kiapi::common::types::StrokeAttributes* stroke
= msg.mutable_attributes()->mutable_stroke();
kiapi::common::types::GraphicFillAttributes* fill = msg.mutable_attributes()->mutable_fill();
stroke->mutable_width()->set_value_nm( GetWidth() );
switch( GetLineStyle() )
{
case LINE_STYLE::DEFAULT: stroke->set_style( kiapi::common::types::SLS_DEFAULT ); break;
case LINE_STYLE::SOLID: stroke->set_style( kiapi::common::types::SLS_SOLID ); break;
case LINE_STYLE::DASH: stroke->set_style( kiapi::common::types::SLS_DASH ); break;
case LINE_STYLE::DOT: stroke->set_style( kiapi::common::types::SLS_DOT ); break;
case LINE_STYLE::DASHDOT: stroke->set_style( kiapi::common::types::SLS_DASHDOT ); break;
case LINE_STYLE::DASHDOTDOT: stroke->set_style( kiapi::common::types::SLS_DASHDOTDOT ); break;
default: break;
}
switch( GetFillMode() )
{
case FILL_T::FILLED_SHAPE: fill->set_fill_type( kiapi::common::types::GFT_FILLED ); break;
default: fill->set_fill_type( kiapi::common::types::GFT_UNFILLED ); break;
}
switch( GetShape() )
{
case SHAPE_T::SEGMENT:
{
kiapi::board::types::GraphicSegmentAttributes* segment = msg.mutable_segment();
kiapi::common::PackVector2( *segment->mutable_start(), GetStart() );
kiapi::common::PackVector2( *segment->mutable_end(), GetEnd() );
break;
}
case SHAPE_T::RECTANGLE:
{
kiapi::board::types::GraphicRectangleAttributes* rectangle = msg.mutable_rectangle();
kiapi::common::PackVector2( *rectangle->mutable_top_left(), GetStart() );
kiapi::common::PackVector2( *rectangle->mutable_bottom_right(), GetEnd() );
break;
}
case SHAPE_T::ARC:
{
kiapi::board::types::GraphicArcAttributes* arc = msg.mutable_arc();
kiapi::common::PackVector2( *arc->mutable_start(), GetStart() );
kiapi::common::PackVector2( *arc->mutable_mid(), GetArcMid() );
kiapi::common::PackVector2( *arc->mutable_end(), GetEnd() );
break;
}
case SHAPE_T::CIRCLE:
{
kiapi::board::types::GraphicCircleAttributes* circle = msg.mutable_circle();
kiapi::common::PackVector2( *circle->mutable_center(), GetStart() );
kiapi::common::PackVector2( *circle->mutable_radius_point(), GetEnd() );
break;
}
case SHAPE_T::POLY:
{
kiapi::common::types::PolySet* polyset = msg.mutable_polygon();
for( int idx = 0; idx < GetPolyShape().OutlineCount(); ++idx )
{
const SHAPE_POLY_SET::POLYGON& poly = GetPolyShape().Polygon( idx );
if( poly.empty() )
continue;
kiapi::common::types::PolygonWithHoles* polyMsg = polyset->mutable_polygons()->Add();
kiapi::common::PackPolyLine( *polyMsg->mutable_outline(), poly.front() );
if( poly.size() > 1 )
{
for( size_t hole = 1; hole < poly.size(); ++hole )
{
kiapi::common::types::PolyLine* pl = polyMsg->mutable_holes()->Add();
kiapi::common::PackPolyLine( *pl, poly[hole] );
}
}
}
break;
}
case SHAPE_T::BEZIER:
{
kiapi::board::types::GraphicBezierAttributes* bezier = msg.mutable_bezier();
kiapi::common::PackVector2( *bezier->mutable_start(), GetStart() );
kiapi::common::PackVector2( *bezier->mutable_control1(), GetBezierC1() );
kiapi::common::PackVector2( *bezier->mutable_control2(), GetBezierC2() );
kiapi::common::PackVector2( *bezier->mutable_end(), GetEnd() );
break;
}
default:
wxASSERT_MSG( false, "Unhandled shape in PCB_SHAPE::Serialize" );
}
// TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( msg );
}
bool PCB_SHAPE::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::GraphicShape msg;
if( !aContainer.UnpackTo( &msg ) )
return false;
// Initialize everything to a known state that doesn't get touched by every
// codepath below, to make sure the equality operator is consistent
m_start = {};
m_end = {};
m_arcCenter = {};
m_arcMidData = {};
m_bezierC1 = {};
m_bezierC2 = {};
m_editState = 0;
m_proxyItem = false;
m_endsSwapped = false;
const_cast<KIID&>( m_Uuid ) = KIID( msg.id().value() );
SetLocked( msg.locked() == kiapi::common::types::LS_LOCKED );
SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( msg.layer() ) );
SetNetCode( msg.net().code().value() );
SetFilled( msg.attributes().fill().fill_type() == kiapi::common::types::GFT_FILLED );
SetWidth( msg.attributes().stroke().width().value_nm() );
switch( msg.attributes().stroke().style() )
{
case kiapi::common::types::SLS_DEFAULT: SetLineStyle( LINE_STYLE::DEFAULT ); break;
case kiapi::common::types::SLS_SOLID: SetLineStyle( LINE_STYLE::SOLID ); break;
case kiapi::common::types::SLS_DASH: SetLineStyle( LINE_STYLE::DASH ); break;
case kiapi::common::types::SLS_DOT: SetLineStyle( LINE_STYLE::DOT ); break;
case kiapi::common::types::SLS_DASHDOT: SetLineStyle( LINE_STYLE::DASHDOT ); break;
case kiapi::common::types::SLS_DASHDOTDOT: SetLineStyle( LINE_STYLE::DASHDOTDOT ); break;
default: break;
}
if( msg.has_segment() )
{
SetShape( SHAPE_T::SEGMENT );
SetStart( kiapi::common::UnpackVector2( msg.segment().start() ) );
SetEnd( kiapi::common::UnpackVector2( msg.segment().end() ) );
}
else if( msg.has_rectangle() )
{
SetShape( SHAPE_T::RECTANGLE );
SetStart( kiapi::common::UnpackVector2( msg.rectangle().top_left() ) );
SetEnd( kiapi::common::UnpackVector2( msg.rectangle().bottom_right() ) );
}
else if( msg.has_arc() )
{
SetShape( SHAPE_T::ARC );
SetArcGeometry( kiapi::common::UnpackVector2( msg.arc().start() ),
kiapi::common::UnpackVector2( msg.arc().mid() ),
kiapi::common::UnpackVector2( msg.arc().end() ) );
}
else if( msg.has_circle() )
{
SetShape( SHAPE_T::CIRCLE );
SetStart( kiapi::common::UnpackVector2( msg.circle().center() ) );
SetEnd( kiapi::common::UnpackVector2( msg.circle().radius_point() ) );
}
else if( msg.has_polygon() )
{
SetShape( SHAPE_T::POLY );
const auto& polyMsg = msg.polygon().polygons();
SHAPE_POLY_SET sps;
for( const kiapi::common::types::PolygonWithHoles& polygonWithHoles : polyMsg )
{
SHAPE_POLY_SET::POLYGON polygon;
polygon.emplace_back( kiapi::common::UnpackPolyLine( polygonWithHoles.outline() ) );
for( const kiapi::common::types::PolyLine& holeMsg : polygonWithHoles.holes() )
polygon.emplace_back( kiapi::common::UnpackPolyLine( holeMsg ) );
sps.AddPolygon( polygon );
}
SetPolyShape( sps );
}
else if( msg.has_bezier() )
{
SetShape( SHAPE_T::BEZIER );
SetStart( kiapi::common::UnpackVector2( msg.bezier().start() ) );
SetBezierC1( kiapi::common::UnpackVector2( msg.bezier().control1() ) );
SetBezierC2( kiapi::common::UnpackVector2( msg.bezier().control2() ) );
SetEnd( kiapi::common::UnpackVector2( msg.bezier().end() ) );
RebuildBezierToSegmentsPointsList( ARC_HIGH_DEF );
}
// TODO m_hasSolderMask and m_solderMaskMargin
return true;
}
bool PCB_SHAPE::IsType( const std::vector<KICAD_T>& aScanTypes ) const
{
if( BOARD_ITEM::IsType( aScanTypes ) )
return true;
bool sametype = false;
for( KICAD_T scanType : aScanTypes )
{
if( scanType == PCB_LOCATE_BOARD_EDGE_T )
sametype = m_layer == Edge_Cuts;
else if( scanType == PCB_SHAPE_LOCATE_ARC_T )
sametype = m_shape == SHAPE_T::ARC;
else if( scanType == PCB_SHAPE_LOCATE_CIRCLE_T )
sametype = m_shape == SHAPE_T::CIRCLE;
else if( scanType == PCB_SHAPE_LOCATE_RECT_T )
sametype = m_shape == SHAPE_T::RECTANGLE;
else if( scanType == PCB_SHAPE_LOCATE_SEGMENT_T )
sametype = m_shape == SHAPE_T::SEGMENT;
else if( scanType == PCB_SHAPE_LOCATE_POLY_T )
sametype = m_shape == SHAPE_T::POLY;
else if( scanType == PCB_SHAPE_LOCATE_BEZIER_T )
sametype = m_shape == SHAPE_T::BEZIER;
if( sametype )
return true;
}
return false;
}
bool PCB_SHAPE::IsConnected() const
{
// Only board-level copper shapes are connectable
return IsOnCopperLayer() && !GetParentFootprint();
}
void PCB_SHAPE::SetLayer( PCB_LAYER_ID aLayer )
{
BOARD_ITEM::SetLayer( aLayer );
if( !IsOnCopperLayer() )
SetNetCode( -1 );
}
int PCB_SHAPE::GetSolderMaskExpansion() const
{
int margin = m_solderMaskMargin.value_or( 0 );
// If no local margin is set, get the board's solder mask expansion value
if( !m_solderMaskMargin.has_value() )
{
const BOARD* board = GetBoard();
if( board )
margin = board->GetDesignSettings().m_SolderMaskExpansion;
}
// Ensure the resulting mask opening has a non-negative size
if( margin < 0 && !IsFilled() )
margin = std::max( margin, -GetWidth() / 2 );
return margin;
}
bool PCB_SHAPE::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
if( aLayer == m_layer )
{
return true;
}
if( m_hasSolderMask
&& ( ( aLayer == F_Mask && m_layer == F_Cu )
|| ( aLayer == B_Mask && m_layer == B_Cu ) ) )
{
return true;
}
return false;
}
LSET PCB_SHAPE::GetLayerSet() const
{
LSET layermask( { m_layer } );
if( m_hasSolderMask )
{
if( layermask.test( F_Cu ) )
layermask.set( F_Mask );
if( layermask.test( B_Cu ) )
layermask.set( B_Mask );
}
return layermask;
}
void PCB_SHAPE::SetLayerSet( const LSET& aLayerSet )
{
aLayerSet.RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
if( IsCopperLayer( layer ) )
SetLayer( layer );
else if( IsSolderMaskLayer( layer ) )
SetHasSolderMask( true );
} );
}
std::vector<VECTOR2I> PCB_SHAPE::GetConnectionPoints() const
{
std::vector<VECTOR2I> ret;
// For filled shapes, we may as well use a centroid
if( IsFilled() )
{
ret.emplace_back( GetCenter() );
return ret;
}
switch( m_shape )
{
case SHAPE_T::CIRCLE:
{
const CIRCLE circle( GetCenter(), GetRadius() );
for( const TYPED_POINT2I& pt : KIGEOM::GetCircleKeyPoints( circle, false ) )
{
ret.emplace_back( pt.m_point );
}
break;
}
case SHAPE_T::ARC:
ret.emplace_back( GetArcMid() );
KI_FALLTHROUGH;
case SHAPE_T::SEGMENT:
case SHAPE_T::BEZIER:
ret.emplace_back( GetStart() );
ret.emplace_back( GetEnd() );
break;
case SHAPE_T::POLY:
for( auto iter = GetPolyShape().CIterate(); iter; ++iter )
ret.emplace_back( *iter );
break;
case SHAPE_T::RECTANGLE:
for( const VECTOR2I& pt : GetRectCorners() )
ret.emplace_back( pt );
break;
case SHAPE_T::UNDEFINED:
// No default - handle all cases, even if just break
break;
}
return ret;
}
int PCB_SHAPE::GetWidth() const
{
// A stroke width of 0 in PCBNew means no-border, but negative stroke-widths are only used
// in EEschema (see SCH_SHAPE::GetPenWidth()).
// Since negative stroke widths can trip up down-stream code (such as the Gerber plotter), we
// weed them out here.
return std::max( EDA_SHAPE::GetWidth(), 0 );
}
void PCB_SHAPE::StyleFromSettings( const BOARD_DESIGN_SETTINGS& settings )
{
m_stroke.SetWidth( settings.GetLineThickness( GetLayer() ) );
}
const VECTOR2I PCB_SHAPE::GetFocusPosition() const
{
// For some shapes return the visual center, but for not filled polygonal shapes,
// the center is usually far from the shape: a point on the outline is better
switch( m_shape )
{
case SHAPE_T::CIRCLE:
if( !IsFilled() )
return VECTOR2I( GetCenter().x + GetRadius(), GetCenter().y );
else
return GetCenter();
case SHAPE_T::RECTANGLE:
if( !IsFilled() )
return GetStart();
else
return GetCenter();
case SHAPE_T::POLY:
if( !IsFilled() )
{
VECTOR2I pos = GetPolyShape().Outline(0).CPoint(0);
return VECTOR2I( pos.x, pos.y );
}
else
{
return GetCenter();
}
case SHAPE_T::ARC:
return GetArcMid();
case SHAPE_T::BEZIER:
return GetStart();
default:
return GetCenter();
}
}
std::vector<VECTOR2I> PCB_SHAPE::GetCorners() const
{
std::vector<VECTOR2I> pts;
if( GetShape() == SHAPE_T::RECTANGLE )
{
pts = GetRectCorners();
}
else if( GetShape() == SHAPE_T::POLY )
{
for( int ii = 0; ii < GetPolyShape().OutlineCount(); ++ii )
{
for( const VECTOR2I& pt : GetPolyShape().Outline( ii ).CPoints() )
pts.emplace_back( pt );
}
}
else
{
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
while( pts.size() < 4 )
pts.emplace_back( pts.back() + VECTOR2I( 10, 10 ) );
return pts;
}
void PCB_SHAPE::Move( const VECTOR2I& aMoveVector )
{
move( aMoveVector );
}
void PCB_SHAPE::Scale( double aScale )
{
scale( aScale );
}
void PCB_SHAPE::Normalize()
{
if( m_shape == SHAPE_T::RECTANGLE )
{
VECTOR2I start = GetStart();
VECTOR2I end = GetEnd();
BOX2I rect( start, end - start );
rect.Normalize();
SetStart( rect.GetPosition() );
SetEnd( rect.GetEnd() );
}
else if( m_shape == SHAPE_T::POLY )
{
auto horizontal =
[]( const SEG& seg )
{
return seg.A.y == seg.B.y;
};
auto vertical =
[]( const SEG& seg )
{
return seg.A.x == seg.B.x;
};
// Convert a poly back to a rectangle if appropriate
if( m_poly.OutlineCount() == 1 && m_poly.Outline( 0 ).SegmentCount() == 4 )
{
SHAPE_LINE_CHAIN& outline = m_poly.Outline( 0 );
if( horizontal( outline.Segment( 0 ) )
&& vertical( outline.Segment( 1 ) )
&& horizontal( outline.Segment( 2 ) )
&& vertical( outline.Segment( 3 ) ) )
{
m_shape = SHAPE_T::RECTANGLE;
m_start.x = std::min( outline.Segment( 0 ).A.x, outline.Segment( 0 ).B.x );
m_start.y = std::min( outline.Segment( 1 ).A.y, outline.Segment( 1 ).B.y );
m_end.x = std::max( outline.Segment( 0 ).A.x, outline.Segment( 0 ).B.x );
m_end.y = std::max( outline.Segment( 1 ).A.y, outline.Segment( 1 ).B.y );
}
else if( vertical( outline.Segment( 0 ) )
&& horizontal( outline.Segment( 1 ) )
&& vertical( outline.Segment( 2 ) )
&& horizontal( outline.Segment( 3 ) ) )
{
m_shape = SHAPE_T::RECTANGLE;
m_start.x = std::min( outline.Segment( 1 ).A.x, outline.Segment( 1 ).B.x );
m_start.y = std::min( outline.Segment( 0 ).A.y, outline.Segment( 0 ).B.y );
m_end.x = std::max( outline.Segment( 1 ).A.x, outline.Segment( 1 ).B.x );
m_end.y = std::max( outline.Segment( 0 ).A.y, outline.Segment( 0 ).B.y );
}
}
}
}
void PCB_SHAPE::NormalizeForCompare()
{
if( m_shape == SHAPE_T::SEGMENT )
{
// we want start point the top left point and end point the bottom right
// (more easy to compare 2 segments: we are seeing them as equivalent if
// they have the same end points, not necessary the same order)
VECTOR2I start = GetStart();
VECTOR2I end = GetEnd();
if( ( start.x > end.x )
|| ( start.x == end.x && start.y < end.y ) )
{
SetStart( end );
SetEnd( start );
}
}
else
Normalize();
}
void PCB_SHAPE::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
rotate( aRotCentre, aAngle );
}
void PCB_SHAPE::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
flip( aCentre, aFlipDirection );
SetLayer( GetBoard()->FlipLayer( GetLayer() ) );
}
void PCB_SHAPE::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
// Mirror an edge of the footprint. the layer is not modified
// This is a footprint shape modification.
switch( GetShape() )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::RECTANGLE:
case SHAPE_T::CIRCLE:
case SHAPE_T::BEZIER:
MIRROR( m_start, aCentre, aFlipDirection );
MIRROR( m_end, aCentre, aFlipDirection );
MIRROR( m_arcCenter, aCentre, aFlipDirection );
MIRROR( m_bezierC1, aCentre, aFlipDirection );
MIRROR( m_bezierC2, aCentre, aFlipDirection );
if( GetShape() == SHAPE_T::ARC )
std::swap( m_start, m_end );
if( GetShape() == SHAPE_T::BEZIER )
RebuildBezierToSegmentsPointsList( ARC_HIGH_DEF );
break;
case SHAPE_T::POLY:
m_poly.Mirror( aCentre, aFlipDirection );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
void PCB_SHAPE::SetIsProxyItem( bool aIsProxy )
{
PAD* parentPad = nullptr;
if( GetBoard() && GetBoard()->IsFootprintHolder() )
{
for( FOOTPRINT* fp : GetBoard()->Footprints() )
{
for( PAD* pad : fp->Pads() )
{
if( pad->IsEntered() )
{
parentPad = pad;
break;
}
}
}
}
if( aIsProxy && !m_proxyItem )
{
if( GetShape() == SHAPE_T::SEGMENT )
{
if( parentPad && parentPad->GetThermalSpokeWidth() )
SetWidth( parentPad->GetThermalSpokeWidth() );
else
SetWidth( pcbIUScale.mmToIU( ZONE_THERMAL_RELIEF_COPPER_WIDTH_MM ) );
}
else
{
SetWidth( 1 );
}
}
else if( m_proxyItem && !aIsProxy )
{
SetWidth( pcbIUScale.mmToIU( DEFAULT_LINE_WIDTH ) );
}
m_proxyItem = aIsProxy;
}
double PCB_SHAPE::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
constexpr double HIDE = std::numeric_limits<double>::max();
constexpr double SHOW = 0.0;
KIGFX::PCB_PAINTER* painter = static_cast<KIGFX::PCB_PAINTER*>( aView->GetPainter() );
KIGFX::PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
if( aLayer == LAYER_LOCKED_ITEM_SHADOW )
{
// Hide shadow if the main layer is not shown
if( !aView->IsLayerVisible( m_layer ) )
return HIDE;
// Hide shadow on dimmed tracks
if( renderSettings->GetHighContrast() )
{
if( m_layer != renderSettings->GetPrimaryHighContrastLayer() )
return HIDE;
}
}
if( FOOTPRINT* parent = GetParentFootprint() )
{
if( parent->GetLayer() == F_Cu && !aView->IsLayerVisible( LAYER_FOOTPRINTS_FR ) )
return HIDE;
if( parent->GetLayer() == B_Cu && !aView->IsLayerVisible( LAYER_FOOTPRINTS_BK ) )
return HIDE;
}
return SHOW;
}
void PCB_SHAPE::ViewGetLayers( int aLayers[], int& aCount ) const
{
aLayers[0] = GetLayer();
if( IsOnCopperLayer() )
{
aLayers[1] = GetNetnameLayer( aLayers[0] );
aCount = 2;
if( m_hasSolderMask )
{
if( m_layer == F_Cu )
aLayers[ aCount++ ] = F_Mask;
else if( m_layer == B_Cu )
aLayers[ aCount++ ] = B_Mask;
}
}
else
{
aCount = 1;
}
if( IsLocked() )
aLayers[ aCount++ ] = LAYER_LOCKED_ITEM_SHADOW;
}
void PCB_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME )
{
if( FOOTPRINT* parent = GetParentFootprint() )
aList.emplace_back( _( "Footprint" ), parent->GetReference() );
}
aList.emplace_back( _( "Type" ), _( "Drawing" ) );
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME && IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
ShapeGetMsgPanelInfo( aFrame, aList );
aList.emplace_back( _( "Layer" ), GetLayerName() );
}
wxString PCB_SHAPE::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
FOOTPRINT* parentFP = nullptr;
if( EDA_DRAW_FRAME* frame = dynamic_cast<EDA_DRAW_FRAME*>( aUnitsProvider ) )
{
if( frame->GetName() == PCB_EDIT_FRAME_NAME )
parentFP = GetParentFootprint();
}
if( IsOnCopperLayer() )
{
if( parentFP )
{
return wxString::Format( _( "%s %s of %s on %s" ),
GetFriendlyName(),
GetNetnameMsg(),
parentFP->GetReference(),
GetLayerName() );
}
else
{
return wxString::Format( _( "%s %s on %s" ),
GetFriendlyName(),
GetNetnameMsg(),
GetLayerName() );
}
}
else
{
if( parentFP )
{
return wxString::Format( _( "%s of %s on %s" ),
GetFriendlyName(),
parentFP->GetReference(),
GetLayerName() );
}
else
{
return wxString::Format( _( "%s on %s" ),
GetFriendlyName(),
GetLayerName() );
}
}
}
BITMAPS PCB_SHAPE::GetMenuImage() const
{
if( GetParentFootprint() )
return BITMAPS::show_mod_edge;
else
return BITMAPS::add_dashed_line;
}
EDA_ITEM* PCB_SHAPE::Clone() const
{
return new PCB_SHAPE( *this );
}
const BOX2I PCB_SHAPE::ViewBBox() const
{
BOX2I return_box = EDA_ITEM::ViewBBox();
// Inflate the bounding box by just a bit more for safety.
return_box.Inflate( GetWidth() );
return return_box;
}
std::shared_ptr<SHAPE> PCB_SHAPE::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
return std::make_shared<SHAPE_COMPOUND>( MakeEffectiveShapes() );
}
void PCB_SHAPE::swapData( BOARD_ITEM* aImage )
{
PCB_SHAPE* image = dynamic_cast<PCB_SHAPE*>( aImage );
wxCHECK( image, /* void */ );
SwapShape( image );
// Swap params not handled by SwapShape( image )
std::swap( m_layer, image->m_layer );
std::swap( m_isKnockout, image->m_isKnockout );
std::swap( m_isLocked, image->m_isLocked );
std::swap( m_flags, image->m_flags );
std::swap( m_parent, image->m_parent );
std::swap( m_forceVisible, image->m_forceVisible );
std::swap( m_netinfo, image->m_netinfo );
std::swap( m_hasSolderMask, image->m_hasSolderMask );
std::swap( m_solderMaskMargin, image->m_solderMaskMargin );
}
bool PCB_SHAPE::cmp_drawings::operator()( const BOARD_ITEM* aFirst,
const BOARD_ITEM* aSecond ) const
{
if( aFirst->Type() != aSecond->Type() )
return aFirst->Type() < aSecond->Type();
if( aFirst->GetLayer() != aSecond->GetLayer() )
return aFirst->GetLayer() < aSecond->GetLayer();
if( aFirst->Type() == PCB_SHAPE_T )
{
const PCB_SHAPE* dwgA = static_cast<const PCB_SHAPE*>( aFirst );
const PCB_SHAPE* dwgB = static_cast<const PCB_SHAPE*>( aSecond );
if( dwgA->GetShape() != dwgB->GetShape() )
return dwgA->GetShape() < dwgB->GetShape();
}
return aFirst->m_Uuid < aSecond->m_Uuid;
}
void PCB_SHAPE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aError, ERROR_LOC aErrorLoc,
bool ignoreLineWidth ) const
{
EDA_SHAPE::TransformShapeToPolygon( aBuffer, aClearance, aError, aErrorLoc, ignoreLineWidth );
}
bool PCB_SHAPE::operator==( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_SHAPE& other = static_cast<const PCB_SHAPE&>( aOther );
return *this == other;
}
bool PCB_SHAPE::operator==( const PCB_SHAPE& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_SHAPE& other = static_cast<const PCB_SHAPE&>( aOther );
if( m_layer != other.m_layer )
return false;
if( m_isKnockout != other.m_isKnockout )
return false;
if( m_isLocked != other.m_isLocked )
return false;
if( m_flags != other.m_flags )
return false;
if( m_forceVisible != other.m_forceVisible )
return false;
if( m_netinfo->GetNetCode() != other.m_netinfo->GetNetCode() )
return false;
if( m_hasSolderMask != other.m_hasSolderMask )
return false;
if( m_solderMaskMargin != other.m_solderMaskMargin )
return false;
return EDA_SHAPE::operator==( other );
}
double PCB_SHAPE::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_SHAPE& other = static_cast<const PCB_SHAPE&>( aOther );
double similarity = 1.0;
if( GetLayer() != other.GetLayer() )
similarity *= 0.9;
if( m_isKnockout != other.m_isKnockout )
similarity *= 0.9;
if( m_isLocked != other.m_isLocked )
similarity *= 0.9;
if( m_flags != other.m_flags )
similarity *= 0.9;
if( m_forceVisible != other.m_forceVisible )
similarity *= 0.9;
if( m_netinfo->GetNetCode() != other.m_netinfo->GetNetCode() )
similarity *= 0.9;
if( m_hasSolderMask != other.m_hasSolderMask )
similarity *= 0.9;
if( m_solderMaskMargin != other.m_solderMaskMargin )
similarity *= 0.9;
similarity *= EDA_SHAPE::Similarity( other );
return similarity;
}
static struct PCB_SHAPE_DESC
{
PCB_SHAPE_DESC()
{
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( PCB_SHAPE );
propMgr.AddTypeCast( new TYPE_CAST<PCB_SHAPE, BOARD_CONNECTED_ITEM> );
propMgr.AddTypeCast( new TYPE_CAST<PCB_SHAPE, EDA_SHAPE> );
propMgr.InheritsAfter( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.InheritsAfter( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( EDA_SHAPE ) );
// Need to initialise enum_map before we can use a Property enum for it
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( PCB_LAYER_ID layer : LSET::AllLayersMask().Seq() )
layerEnum.Map( layer, LSET::Name( layer ) );
}
void ( PCB_SHAPE::*shapeLayerSetter )( PCB_LAYER_ID ) = &PCB_SHAPE::SetLayer;
PCB_LAYER_ID ( PCB_SHAPE::*shapeLayerGetter )() const = &PCB_SHAPE::GetLayer;
auto layerProperty = new PROPERTY_ENUM<PCB_SHAPE, PCB_LAYER_ID>(
_HKI( "Layer" ), shapeLayerSetter, shapeLayerGetter );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ), layerProperty );
// Only polygons have meaningful Position properties.
// On other shapes, these are duplicates of the Start properties.
auto isPolygon =
[]( INSPECTABLE* aItem ) -> bool
{
if( PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( aItem ) )
return shape->GetShape() == SHAPE_T::POLY;
return false;
};
propMgr.OverrideAvailability( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_ITEM ),
_HKI( "Position X" ), isPolygon );
propMgr.OverrideAvailability( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_ITEM ),
_HKI( "Position Y" ), isPolygon );
propMgr.Mask( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( EDA_SHAPE ), _HKI( "Line Color" ) );
propMgr.Mask( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( EDA_SHAPE ), _HKI( "Fill Color" ) );
auto isCopper =
[]( INSPECTABLE* aItem ) -> bool
{
if( PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( aItem ) )
return shape->IsOnCopperLayer();
return false;
};
propMgr.OverrideAvailability( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_CONNECTED_ITEM ),
_HKI( "Net" ), isCopper );
auto isPadEditMode =
[]( BOARD* aBoard ) -> bool
{
if( aBoard && aBoard->IsFootprintHolder() )
{
for( FOOTPRINT* fp : aBoard->Footprints() )
{
for( PAD* pad : fp->Pads() )
{
if( pad->IsEntered() )
return true;
}
}
}
return false;
};
auto showNumberBoxProperty =
[&]( INSPECTABLE* aItem ) -> bool
{
if( PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( aItem ) )
{
if( shape->GetShape() == SHAPE_T::RECTANGLE )
return isPadEditMode( shape->GetBoard() );
}
return false;
};
auto showSpokeTemplateProperty =
[&]( INSPECTABLE* aItem ) -> bool
{
if( PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( aItem ) )
{
if( shape->GetShape() == SHAPE_T::SEGMENT )
return isPadEditMode( shape->GetBoard() );
}
return false;
};
const wxString groupPadPrimitives = _HKI( "Pad Primitives" );
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, bool>( _HKI( "Number Box" ),
&PCB_SHAPE::SetIsProxyItem,
&PCB_SHAPE::IsProxyItem ),
groupPadPrimitives )
.SetAvailableFunc( showNumberBoxProperty )
.SetIsHiddenFromRulesEditor();
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, bool>( _HKI( "Thermal Spoke Template" ),
&PCB_SHAPE::SetIsProxyItem,
&PCB_SHAPE::IsProxyItem ),
groupPadPrimitives )
.SetAvailableFunc( showSpokeTemplateProperty )
.SetIsHiddenFromRulesEditor();
const wxString groupTechLayers = _HKI( "Technical Layers" );
auto isExternalCuLayer =
[]( INSPECTABLE* aItem )
{
if( auto shape = dynamic_cast<PCB_SHAPE*>( aItem ) )
return IsExternalCopperLayer( shape->GetLayer() );
return false;
};
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, bool>( _HKI( "Soldermask" ),
&PCB_SHAPE::SetHasSolderMask,
&PCB_SHAPE::HasSolderMask ),
groupTechLayers )
.SetAvailableFunc( isExternalCuLayer );
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, std::optional<int>>(
_HKI( "Soldermask Margin Override" ),
&PCB_SHAPE::SetLocalSolderMaskMargin,
&PCB_SHAPE::GetLocalSolderMaskMargin,
PROPERTY_DISPLAY::PT_SIZE ),
groupTechLayers )
.SetAvailableFunc( isExternalCuLayer );
}
} _PCB_SHAPE_DESC;