kicad/pcbnew/router/pns_dp_meander_placer.cpp

525 lines
13 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2023 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <optional>
#include "pns_node.h"
#include "pns_itemset.h"
#include "pns_topology.h"
#include "pns_dp_meander_placer.h"
#include "pns_diff_pair.h"
#include "pns_router.h"
#include "pns_solid.h"
namespace PNS {
DP_MEANDER_PLACER::DP_MEANDER_PLACER( ROUTER* aRouter ) :
MEANDER_PLACER_BASE( aRouter )
{
m_world = nullptr;
m_currentNode = nullptr;
m_padToDieP = 0;
m_padToDieN = 0;
// Init temporary variables (do not leave uninitialized members)
m_initialSegment = nullptr;
m_lastLength = 0;
m_lastStatus = TOO_SHORT;
}
DP_MEANDER_PLACER::~DP_MEANDER_PLACER()
{
}
const LINE DP_MEANDER_PLACER::Trace() const
{
return m_currentTraceP;
}
const DIFF_PAIR& DP_MEANDER_PLACER::GetOriginPair()
{
return m_originPair;
}
NODE* DP_MEANDER_PLACER::CurrentNode( bool aLoopsRemoved ) const
{
if( !m_currentNode )
return m_world;
return m_currentNode;
}
bool DP_MEANDER_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem )
{
if( !aStartItem || !aStartItem->OfKind( ITEM::SEGMENT_T | ITEM::ARC_T ) )
{
Router()->SetFailureReason( _( "Please select a track whose length you want to tune." ) );
return false;
}
m_initialSegment = static_cast<LINKED_ITEM*>( aStartItem );
m_currentNode = nullptr;
m_currentStart = getSnappedStartPoint( m_initialSegment, aP );
m_world = Router()->GetWorld()->Branch();
TOPOLOGY topo( m_world );
if( !topo.AssembleDiffPair( m_initialSegment, m_originPair ) )
{
Router()->SetFailureReason( _( "Unable to find complementary differential pair "
"net for length tuning. Make sure the names of the nets "
"belonging to a differential pair end with either _N/_P "
"or +/-." ) );
return false;
}
if( m_originPair.Gap() < 0 )
m_originPair.SetGap( Router()->Sizes().DiffPairGap() );
if( !m_originPair.PLine().SegmentCount() || !m_originPair.NLine().SegmentCount() )
return false;
m_tunedPathP = topo.AssembleTuningPath( m_originPair.PLine().GetLink( 0 ), &m_startPad_p, &m_endPad_p );
m_padToDieP = 0;
if( m_startPad_p )
m_padToDieP += m_startPad_p->GetPadToDie();
if( m_endPad_p )
m_padToDieP += m_endPad_p->GetPadToDie();
m_tunedPathN = topo.AssembleTuningPath( m_originPair.NLine().GetLink( 0 ), &m_startPad_n, &m_endPad_n );
m_padToDieN = 0;
if( m_startPad_n )
m_padToDieN += m_startPad_n->GetPadToDie();
if( m_endPad_n )
m_padToDieN += m_endPad_n->GetPadToDie();
m_world->Remove( m_originPair.PLine() );
m_world->Remove( m_originPair.NLine() );
m_currentWidth = m_originPair.Width();
return true;
}
void DP_MEANDER_PLACER::release()
{
}
long long int DP_MEANDER_PLACER::origPathLength() const
{
long long int totalP = m_padToDieP + lineLength( m_tunedPathP, m_startPad_p, m_endPad_p );
long long int totalN = m_padToDieN + lineLength( m_tunedPathN, m_startPad_n, m_endPad_n );
return std::max( totalP, totalN );
}
const SEG DP_MEANDER_PLACER::baselineSegment( const DIFF_PAIR::COUPLED_SEGMENTS& aCoupledSegs )
{
const VECTOR2I a( ( aCoupledSegs.coupledP.A + aCoupledSegs.coupledN.A ) / 2 );
const VECTOR2I b( ( aCoupledSegs.coupledP.B + aCoupledSegs.coupledN.B ) / 2 );
return SEG( a, b );
}
bool DP_MEANDER_PLACER::pairOrientation( const DIFF_PAIR::COUPLED_SEGMENTS& aPair )
{
VECTOR2I midp = ( aPair.coupledP.A + aPair.coupledN.A ) / 2;
//DrawDebugPoint(midp, 6);
return aPair.coupledP.Side( midp ) > 0;
}
bool DP_MEANDER_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem )
{
if( m_currentStart == aP )
return false;
DIFF_PAIR::COUPLED_SEGMENTS_VEC coupledSegments;
if( m_currentNode )
delete m_currentNode;
m_currentNode = m_world->Branch();
SHAPE_LINE_CHAIN preP, tunedP, postP;
SHAPE_LINE_CHAIN preN, tunedN, postN;
m_originPair.CP().Split( m_currentStart, aP, preP, tunedP, postP );
m_originPair.CN().Split( m_currentStart, aP, preN, tunedN, postN );
auto updateStatus =
[&]()
{
if( m_lastLength > m_settings.m_targetLength.Max() )
m_lastStatus = TOO_LONG;
else if( m_lastLength < m_settings.m_targetLength.Min() )
m_lastStatus = TOO_SHORT;
else
m_lastStatus = TUNED;
};
DIFF_PAIR tuned( m_originPair );
tuned.SetShape( tunedP, tunedN );
tuned.CoupledSegmentPairs( coupledSegments );
if( coupledSegments.size() == 0 )
{
// Tuning started at an uncoupled area of the DP; we won't get a valid result until the
// cursor is moved far enough along a coupled area. Prevent the track from disappearing and
// the length from being zero by just using the original.
m_finalShapeP = m_originPair.CP();
m_finalShapeN = m_originPair.CN();
m_lastLength = origPathLength();
updateStatus();
return false;
}
m_result = MEANDERED_LINE( this, true );
m_result.SetWidth( tuned.Width() );
int offset = ( tuned.Gap() + tuned.Width() ) / 2;
if( pairOrientation( coupledSegments[0] ) )
offset *= -1;
m_result.SetBaselineOffset( offset );
for( const ITEM* item : m_tunedPathP.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
PNS_DBG( Dbg(), AddShape, &l->CLine(), YELLOW, 10000, wxT( "tuned-path-p" ) );
m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 );
}
}
for( const ITEM* item : m_tunedPathN.CItems() )
{
if( const LINE* l = dyn_cast<const LINE*>( item ) )
{
PNS_DBG( Dbg(), AddShape, &l->CLine(), YELLOW, 10000, wxT( "tuned-path-n" ) );
m_router->GetInterface()->DisplayPathLine( l->CLine(), 1 );
}
}
int curIndexP = 0, curIndexN = 0;
for( const DIFF_PAIR::COUPLED_SEGMENTS& sp : coupledSegments )
{
SEG base = baselineSegment( sp );
bool side = false;
if( m_settings.m_initialSide == 0 )
side = base.Side( aP ) < 0;
else
side = m_settings.m_initialSide < 0;
PNS_DBG( Dbg(), AddShape, base, GREEN, 10000, wxT( "dp-baseline" ) );
while( sp.indexP >= curIndexP && curIndexP != -1 )
{
if( tunedP.IsArcSegment( curIndexP ) )
{
ssize_t arcIndex = tunedP.ArcIndex( curIndexP );
m_result.AddArcAndPt( tunedP.Arc( arcIndex ), tunedN.CPoint( curIndexN ) );
}
else
{
m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) );
}
curIndexP = tunedP.NextShape( curIndexP );
}
while( sp.indexN >= curIndexN && curIndexN != -1 )
{
if( tunedN.IsArcSegment( curIndexN ) )
{
ssize_t arcIndex = tunedN.ArcIndex( curIndexN );
m_result.AddPtAndArc( tunedP.CPoint( sp.indexP ), tunedN.Arc( arcIndex ) );
}
else
{
m_result.AddCorner( tunedP.CPoint( sp.indexP ), tunedN.CPoint( curIndexN ) );
}
curIndexN = tunedN.NextShape( curIndexN );
}
m_result.MeanderSegment( base, side );
}
while( curIndexP < tunedP.PointCount() && curIndexP != -1 )
{
if( tunedP.IsArcSegment( curIndexP ) )
{
ssize_t arcIndex = tunedP.ArcIndex( curIndexP );
m_result.AddArcAndPt( tunedP.Arc( arcIndex ), tunedN.CPoint( curIndexN ) );
}
else
{
m_result.AddCorner( tunedP.CPoint( curIndexP ), tunedN.CPoint( curIndexN ) );
}
curIndexP = tunedP.NextShape( curIndexP );
}
while( curIndexN < tunedN.PointCount() && curIndexN != -1 )
{
if( tunedN.IsArcSegment( curIndexN ) )
{
ssize_t arcIndex = tunedN.ArcIndex( curIndexN );
m_result.AddPtAndArc( tunedP.CPoint( -1 ), tunedN.Arc( arcIndex ) );
}
else
{
m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( curIndexN ) );
}
curIndexN = tunedN.NextShape( curIndexN );
}
m_result.AddCorner( tunedP.CPoint( -1 ), tunedN.CPoint( -1 ) );
long long int dpLen = origPathLength();
m_lastStatus = TUNED;
if( dpLen > m_settings.m_targetLength.Max() )
{
m_lastStatus = TOO_LONG;
m_lastLength = dpLen;
}
else
{
m_lastLength = dpLen - std::max( tunedP.Length(), tunedN.Length() );
tuneLineLength( m_result, m_settings.m_targetLength.Opt() - dpLen );
}
if( m_lastStatus != TOO_LONG )
{
tunedP.Clear();
tunedN.Clear();
for( MEANDER_SHAPE* m : m_result.Meanders() )
{
if( m->Type() != MT_EMPTY )
{
tunedP.Append( m->CLine( 0 ) );
tunedN.Append( m->CLine( 1 ) );
}
}
m_lastLength += std::max( tunedP.Length(), tunedN.Length() );
updateStatus();
}
m_finalShapeP.Clear();
m_finalShapeN.Clear();
if( m_settings.m_keepEndpoints )
{
preP.Simplify();
tunedP.Simplify();
postP.Simplify();
m_finalShapeP.Append( preP );
m_finalShapeP.Append( tunedP );
m_finalShapeP.Append( postP );
preN.Simplify();
tunedN.Simplify();
postN.Simplify();
m_finalShapeN.Append( preN );
m_finalShapeN.Append( tunedN );
m_finalShapeN.Append( postN );
}
else
{
m_finalShapeP.Append( preP );
m_finalShapeP.Append( tunedP );
m_finalShapeP.Append( postP );
m_finalShapeP.Simplify();
m_finalShapeN.Append( preN );
m_finalShapeN.Append( tunedN );
m_finalShapeN.Append( postN );
m_finalShapeN.Simplify();
}
return true;
}
bool DP_MEANDER_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish )
{
LINE lP( m_originPair.PLine(), m_finalShapeP );
LINE lN( m_originPair.NLine(), m_finalShapeN );
m_currentNode->Add( lP );
m_currentNode->Add( lN );
CommitPlacement();
return true;
}
bool DP_MEANDER_PLACER::AbortPlacement()
{
m_world->KillChildren();
return true;
}
bool DP_MEANDER_PLACER::HasPlacedAnything() const
{
return m_originPair.CP().SegmentCount() > 0 || m_originPair.CN().SegmentCount() > 0;
}
bool DP_MEANDER_PLACER::CommitPlacement()
{
if( m_currentNode )
Router()->CommitRouting( m_currentNode );
m_currentNode = nullptr;
return true;
}
bool DP_MEANDER_PLACER::CheckFit( MEANDER_SHAPE* aShape )
{
LINE l1( m_originPair.PLine(), aShape->CLine( 0 ) );
LINE l2( m_originPair.NLine(), aShape->CLine( 1 ) );
if( m_currentNode->CheckColliding( &l1 ) )
return false;
if( m_currentNode->CheckColliding( &l2 ) )
return false;
int w = aShape->Width();
int clearance = w + w * 3;
return m_result.CheckSelfIntersections( aShape, clearance );
}
const ITEM_SET DP_MEANDER_PLACER::Traces()
{
m_currentTraceP = LINE( m_originPair.PLine(), m_finalShapeP );
m_currentTraceN = LINE( m_originPair.NLine(), m_finalShapeN );
ITEM_SET traces;
traces.Add( &m_currentTraceP );
traces.Add( &m_currentTraceN );
return traces;
}
const ITEM_SET DP_MEANDER_PLACER::TunedPath()
{
ITEM_SET lines;
for( ITEM* item : m_tunedPathN )
lines.Add( item );
for( ITEM* item : m_tunedPathP )
lines.Add( item );
return lines;
}
const VECTOR2I& DP_MEANDER_PLACER::CurrentStart() const
{
return m_currentStart;
}
const VECTOR2I& DP_MEANDER_PLACER::CurrentEnd() const
{
return m_currentEnd;
}
int DP_MEANDER_PLACER::CurrentLayer() const
{
return m_initialSegment->Layers().Start();
}
long long int DP_MEANDER_PLACER::TuningResult() const
{
if( m_lastLength )
return m_lastLength;
else
return origPathLength();
}
DP_MEANDER_PLACER::TUNING_STATUS DP_MEANDER_PLACER::TuningStatus() const
{
return m_lastStatus;
}
const std::vector<NET_HANDLE> DP_MEANDER_PLACER::CurrentNets() const
{
std::vector<NET_HANDLE> rv;
rv.push_back( m_originPair.NetP() );
rv.push_back( m_originPair.NetN() );
return rv;
}
}