kicad/pcbnew/zone_filler.cpp

2453 lines
89 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014-2017 CERN
* Copyright (C) 2014-2024 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Włostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <future>
#include <core/kicad_algo.h>
#include <advanced_config.h>
#include <board.h>
#include <board_design_settings.h>
#include <zone.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_target.h>
#include <pcb_track.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_tablecell.h>
#include <pcb_table.h>
#include <pcb_dimension.h>
#include <connectivity/connectivity_data.h>
#include <convert_basic_shapes_to_polygon.h>
#include <board_commit.h>
#include <progress_reporter.h>
#include <geometry/shape_poly_set.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <geometry/vertex_set.h>
#include <kidialog.h>
#include <core/thread_pool.h>
#include <math/util.h> // for KiROUND
#include "zone_filler.h"
// Helper classes for connect_nearby_polys
class RESULTS
{
public:
RESULTS( int aOutline1, int aOutline2, int aVertex1, int aVertex2 ) :
m_outline1( aOutline1 ), m_outline2( aOutline2 ),
m_vertex1( aVertex1 ), m_vertex2( aVertex2 )
{
}
bool operator<( const RESULTS& aOther ) const
{
if( m_outline1 != aOther.m_outline1 )
return m_outline1 < aOther.m_outline1;
if( m_outline2 != aOther.m_outline2 )
return m_outline2 < aOther.m_outline2;
if( m_vertex1 != aOther.m_vertex1 )
return m_vertex1 < aOther.m_vertex1;
return m_vertex2 < aOther.m_vertex2;
}
int m_outline1;
int m_outline2;
int m_vertex1;
int m_vertex2;
};
class VERTEX_CONNECTOR : protected VERTEX_SET
{
public:
VERTEX_CONNECTOR( const BOX2I& aBBox, const SHAPE_POLY_SET& aPolys, int aDist ) : VERTEX_SET( 0 )
{
SetBoundingBox( aBBox );
VERTEX* tail = nullptr;
for( int i = 0; i < aPolys.OutlineCount(); i++ )
tail = createList( aPolys.Outline( i ), tail, (void*)( intptr_t )( i ) );
if( tail )
tail->updateList();
m_dist = aDist;
}
VERTEX* getPoint( VERTEX* aPt ) const
{
// z-order range for the current point ± limit bounding box
const uint32_t maxZ = zOrder( aPt->x + m_dist, aPt->y + m_dist );
const uint32_t minZ = zOrder( aPt->x - m_dist, aPt->y - m_dist );
const SEG::ecoord limit2 = SEG::Square( m_dist );
// first look for points in increasing z-order
SEG::ecoord min_dist = std::numeric_limits<SEG::ecoord>::max();
VERTEX* retval = nullptr;
auto check_pt = [&]( VERTEX* p )
{
VECTOR2D diff( p->x - aPt->x, p->y - aPt->y );
SEG::ecoord dist2 = diff.SquaredEuclideanNorm();
if( dist2 > 0 && dist2 < limit2 && dist2 < min_dist && p->isEar( true ) )
{
min_dist = dist2;
retval = p;
}
};
VERTEX* p = aPt->nextZ;
while( p && p->z <= maxZ )
{
check_pt( p );
p = p->nextZ;
}
p = aPt->prevZ;
while( p && p->z >= minZ )
{
check_pt( p );
p = p->prevZ;
}
return retval;
}
void FindResults()
{
if( m_vertices.empty() )
return;
VERTEX* p = m_vertices.front().next;
std::set<VERTEX*> visited;
while( p != &m_vertices.front() )
{
// Skip points that are concave
if( !p->isEar() )
{
p = p->next;
continue;
}
VERTEX* q = nullptr;
if( ( visited.empty() || !visited.contains( p ) ) && ( q = getPoint( p ) ) )
{
visited.insert( p );
if( !visited.contains( q ) &&
m_results.emplace( (intptr_t) p->GetUserData(), (intptr_t) q->GetUserData(),
p->i, q->i ).second )
{
// We don't want to connect multiple points in the same vicinity, so skip
// 2 points before and after each point and match.
visited.insert( p->prev );
visited.insert( p->prev->prev );
visited.insert( p->next );
visited.insert( p->next->next );
visited.insert( q->prev );
visited.insert( q->prev->prev );
visited.insert( q->next );
visited.insert( q->next->next );
visited.insert( q );
}
}
p = p->next;
}
}
std::set<RESULTS> GetResults() const
{
return m_results;
}
private:
std::set<RESULTS> m_results;
int m_dist;
};
ZONE_FILLER::ZONE_FILLER( BOARD* aBoard, COMMIT* aCommit ) :
m_board( aBoard ),
m_brdOutlinesValid( false ),
m_commit( aCommit ),
m_progressReporter( nullptr ),
m_maxError( ARC_HIGH_DEF ),
m_worstClearance( 0 )
{
// To enable add "DebugZoneFiller=1" to kicad_advanced settings file.
m_debugZoneFiller = ADVANCED_CFG::GetCfg().m_DebugZoneFiller;
}
ZONE_FILLER::~ZONE_FILLER()
{
}
void ZONE_FILLER::SetProgressReporter( PROGRESS_REPORTER* aReporter )
{
m_progressReporter = aReporter;
wxASSERT_MSG( m_commit, wxT( "ZONE_FILLER must have a valid commit to call "
"SetProgressReporter" ) );
}
/**
* Fills the given list of zones.
*
* NB: Invalidates connectivity - it is up to the caller to obtain a lock on the connectivity
* data before calling Fill to prevent access to stale data by other coroutines (for example,
* ratsnest redraw). This will generally be required if a UI-based progress reporter has been
* installed.
*
* Caller is also responsible for re-building connectivity afterwards.
*/
bool ZONE_FILLER::Fill( const std::vector<ZONE*>& aZones, bool aCheck, wxWindow* aParent )
{
std::lock_guard<KISPINLOCK> lock( m_board->GetConnectivity()->GetLock() );
std::vector<std::pair<ZONE*, PCB_LAYER_ID>> toFill;
std::map<std::pair<ZONE*, PCB_LAYER_ID>, HASH_128> oldFillHashes;
std::map<ZONE*, std::map<PCB_LAYER_ID, ISOLATED_ISLANDS>> isolatedIslandsMap;
std::shared_ptr<CONNECTIVITY_DATA> connectivity = m_board->GetConnectivity();
// Rebuild (from scratch, ignoring dirty flags) just in case. This really needs to be reliable.
connectivity->ClearRatsnest();
connectivity->Build( m_board, m_progressReporter );
m_worstClearance = m_board->GetMaxClearanceValue();
if( m_progressReporter )
{
m_progressReporter->Report( aCheck ? _( "Checking zone fills..." )
: _( "Building zone fills..." ) );
m_progressReporter->SetMaxProgress( aZones.size() );
m_progressReporter->KeepRefreshing();
}
// The board outlines is used to clip solid areas inside the board (when outlines are valid)
m_boardOutline.RemoveAllContours();
m_brdOutlinesValid = m_board->GetBoardPolygonOutlines( m_boardOutline );
// Update and cache zone bounding boxes and pad effective shapes so that we don't have to
// make them thread-safe.
//
for( ZONE* zone : m_board->Zones() )
zone->CacheBoundingBox();
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->IsDirty() )
{
pad->BuildEffectiveShapes();
pad->BuildEffectivePolygon( ERROR_OUTSIDE );
}
}
for( ZONE* zone : footprint->Zones() )
zone->CacheBoundingBox();
// Rules may depend on insideCourtyard() or other expressions
footprint->BuildCourtyardCaches();
}
LSET boardCuMask = m_board->GetEnabledLayers() & LSET::AllCuMask();
auto findHighestPriorityZone = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer,
const int aNetcode,
const std::function<bool( const ZONE* )> aTestFn ) -> ZONE*
{
unsigned highestPriority = 0;
ZONE* highestPriorityZone = nullptr;
for( ZONE* zone : m_board->Zones() )
{
// Rule areas are not filled
if( zone->GetIsRuleArea() )
continue;
if( zone->GetAssignedPriority() < highestPriority )
continue;
if( !zone->IsOnLayer( aItemLayer ) )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( !zone->GetBoundingBox().Intersects( aBBox ) )
continue;
if( !aTestFn( zone ) )
continue;
// Prefer highest priority and matching netcode
if( zone->GetAssignedPriority() > highestPriority || zone->GetNetCode() == aNetcode )
{
highestPriority = zone->GetAssignedPriority();
highestPriorityZone = zone;
}
}
return highestPriorityZone;
};
auto isInPourKeepoutArea = [&]( const BOX2I& aBBox, const PCB_LAYER_ID aItemLayer,
const VECTOR2I aTestPoint ) -> bool
{
for( ZONE* zone : m_board->Zones() )
{
if( !zone->GetIsRuleArea() )
continue;
if( !zone->HasKeepoutParametersSet() )
continue;
if( !zone->GetDoNotAllowCopperPour() )
continue;
if( !zone->IsOnLayer( aItemLayer ) )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( !zone->GetBoundingBox().Intersects( aBBox ) )
continue;
if( zone->Outline()->Contains( aTestPoint ) )
return true;
}
return false;
};
// Determine state of conditional via flashing
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( track );
via->ClearZoneLayerOverrides();
if( !via->GetRemoveUnconnected() )
continue;
BOX2I bbox = via->GetBoundingBox();
VECTOR2I center = via->GetPosition();
int testRadius = via->GetDrillValue() / 2 + 1;
unsigned netcode = via->GetNetCode();
LSET layers = via->GetLayerSet() & boardCuMask;
// Checking if the via hole touches the zone outline
auto viaTestFn = [&]( const ZONE* aZone ) -> bool
{
return aZone->Outline()->Contains( center, -1, testRadius );
};
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( !via->ConditionallyFlashed( layer ) )
continue;
if( isInPourKeepoutArea( bbox, layer, center ) )
{
via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
else
{
ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, viaTestFn );
if( zone && zone->GetNetCode() == via->GetNetCode() )
via->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
else
via->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
}
}
}
// Determine state of conditional pad flashing
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
pad->ClearZoneLayerOverrides();
if( !pad->GetRemoveUnconnected() )
continue;
BOX2I bbox = pad->GetBoundingBox();
VECTOR2I center = pad->GetPosition();
unsigned netcode = pad->GetNetCode();
LSET layers = pad->GetLayerSet() & boardCuMask;
auto padTestFn = [&]( const ZONE* aZone ) -> bool
{
return aZone->Outline()->Contains( center );
};
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( !pad->ConditionallyFlashed( layer ) )
continue;
if( isInPourKeepoutArea( bbox, layer, center ) )
{
pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
else
{
ZONE* zone = findHighestPriorityZone( bbox, layer, netcode, padTestFn );
if( zone && zone->GetNetCode() == pad->GetNetCode() )
pad->SetZoneLayerOverride( layer, ZLO_FORCE_FLASHED );
else
pad->SetZoneLayerOverride( layer, ZLO_FORCE_NO_ZONE_CONNECTION );
}
}
}
}
for( ZONE* zone : aZones )
{
// Rule areas are not filled
if( zone->GetIsRuleArea() )
continue;
// Degenerate zones will cause trouble; skip them
if( zone->GetNumCorners() <= 2 )
continue;
if( m_commit )
m_commit->Modify( zone );
// calculate the hash value for filled areas. it will be used later to know if the
// current filled areas are up to date
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
oldFillHashes[ { zone, layer } ] = zone->GetHashValue( layer );
// Add the zone to the list of zones to test or refill
toFill.emplace_back( std::make_pair( zone, layer ) );
isolatedIslandsMap[ zone ][ layer ] = ISOLATED_ISLANDS();
}
// Remove existing fill first to prevent drawing invalid polygons on some platforms
zone->UnFill();
}
auto check_fill_dependency =
[&]( ZONE* aZone, PCB_LAYER_ID aLayer, ZONE* aOtherZone ) -> bool
{
// Check to see if we have to knock-out the filled areas of a higher-priority
// zone. If so we have to wait until said zone is filled before we can fill.
// If the other zone is already filled on the requested layer then we're
// good-to-go
if( aOtherZone->GetFillFlag( aLayer ) )
return false;
// Even if keepouts exclude copper pours, the exclusion is by outline rather than
// filled area, so we're good-to-go here too
if( aOtherZone->GetIsRuleArea() )
return false;
// If the other zone is never going to be filled then don't wait for it
if( aOtherZone->GetNumCorners() <= 2 )
return false;
// If the zones share no common layers
if( !aOtherZone->GetLayerSet().test( aLayer ) )
return false;
if( aZone->HigherPriority( aOtherZone ) )
return false;
// Same-net zones always use outlines to produce determinate results
if( aOtherZone->SameNet( aZone ) )
return false;
// A higher priority zone is found: if we intersect and it's not filled yet
// then we have to wait.
BOX2I inflatedBBox = aZone->GetBoundingBox();
inflatedBBox.Inflate( m_worstClearance );
if( !inflatedBBox.Intersects( aOtherZone->GetBoundingBox() ) )
return false;
return aZone->Outline()->Collide( aOtherZone->Outline(), m_worstClearance );
};
auto fill_lambda =
[&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
{
PCB_LAYER_ID layer = aFillItem.second;
ZONE* zone = aFillItem.first;
bool canFill = true;
// Check for any fill dependencies. If our zone needs to be clipped by
// another zone then we can't fill until that zone is filled.
for( ZONE* otherZone : aZones )
{
if( otherZone == zone )
continue;
if( check_fill_dependency( zone, layer, otherZone ) )
{
canFill = false;
break;
}
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return 0;
if( !canFill )
return 0;
// Now we're ready to fill.
{
std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() )
return 0;
SHAPE_POLY_SET fillPolys;
if( !fillSingleZone( zone, layer, fillPolys ) )
return 0;
zone->SetFilledPolysList( layer, fillPolys );
}
if( m_progressReporter )
m_progressReporter->AdvanceProgress();
return 1;
};
auto tesselate_lambda =
[&]( std::pair<ZONE*, PCB_LAYER_ID> aFillItem ) -> int
{
if( m_progressReporter && m_progressReporter->IsCancelled() )
return 0;
PCB_LAYER_ID layer = aFillItem.second;
ZONE* zone = aFillItem.first;
{
std::unique_lock<std::mutex> zoneLock( zone->GetLock(), std::try_to_lock );
if( !zoneLock.owns_lock() )
return 0;
zone->CacheTriangulation( layer );
zone->SetFillFlag( layer, true );
}
return 1;
};
// Calculate the copper fills (NB: this is multi-threaded)
//
std::vector<std::pair<std::future<int>, int>> returns;
returns.reserve( toFill.size() );
size_t finished = 0;
bool cancelled = false;
thread_pool& tp = GetKiCadThreadPool();
for( const std::pair<ZONE*, PCB_LAYER_ID>& fillItem : toFill )
returns.emplace_back( std::make_pair( tp.submit( fill_lambda, fillItem ), 0 ) );
while( !cancelled && finished != 2 * toFill.size() )
{
for( size_t ii = 0; ii < returns.size(); ++ii )
{
auto& ret = returns[ii];
if( ret.second > 1 )
continue;
std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
if( status == std::future_status::ready )
{
if( ret.first.get() ) // lambda completed
{
++finished;
ret.second++; // go to next step
}
if( !cancelled )
{
// Queue the next step (will re-queue the existing step if it didn't complete)
if( ret.second == 0 )
returns[ii].first = tp.submit( fill_lambda, toFill[ii] );
else if( ret.second == 1 )
returns[ii].first = tp.submit( tesselate_lambda, toFill[ii] );
}
}
}
std::this_thread::sleep_for( std::chrono::milliseconds( 100 ) );
if( m_progressReporter )
{
m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() )
cancelled = true;
}
}
// Make sure that all futures have finished.
// This can happen when the user cancels the above operation
for( auto& ret : returns )
{
if( ret.first.valid() )
{
std::future_status status = ret.first.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready )
{
if( m_progressReporter )
m_progressReporter->KeepRefreshing();
status = ret.first.wait_for( std::chrono::milliseconds( 100 ) );
}
}
}
// Now update the connectivity to check for isolated copper islands
// (NB: FindIsolatedCopperIslands() is multi-threaded)
//
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->Report( _( "Removing isolated copper islands..." ) );
m_progressReporter->KeepRefreshing();
}
connectivity->SetProgressReporter( m_progressReporter );
connectivity->FillIsolatedIslandsMap( isolatedIslandsMap );
connectivity->SetProgressReporter( nullptr );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
for( ZONE* zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
continue;
zone->SetIsFilled( true );
}
// Now remove isolated copper islands according to the isolated islands strategy assigned
// by the user (always, never, below-certain-size).
//
for( const auto& [ zone, zoneIslands ] : isolatedIslandsMap )
{
// If *all* the polygons are islands, do not remove any of them
bool allIslands = true;
for( const auto& [ layer, layerIslands ] : zoneIslands )
{
if( layerIslands.m_IsolatedOutlines.size()
!= static_cast<size_t>( zone->GetFilledPolysList( layer )->OutlineCount() ) )
{
allIslands = false;
break;
}
}
if( allIslands )
continue;
for( const auto& [ layer, layerIslands ] : zoneIslands )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
if( layerIslands.m_IsolatedOutlines.empty() )
continue;
std::vector<int> islands = layerIslands.m_IsolatedOutlines;
// The list of polygons to delete must be explored from last to first in list,
// to allow deleting a polygon from list without breaking the remaining of the list
std::sort( islands.begin(), islands.end(), std::greater<int>() );
std::shared_ptr<SHAPE_POLY_SET> poly = zone->GetFilledPolysList( layer );
long long int minArea = zone->GetMinIslandArea();
ISLAND_REMOVAL_MODE mode = zone->GetIslandRemovalMode();
for( int idx : islands )
{
SHAPE_LINE_CHAIN& outline = poly->Outline( idx );
if( mode == ISLAND_REMOVAL_MODE::ALWAYS )
poly->DeletePolygonAndTriangulationData( idx, false );
else if ( mode == ISLAND_REMOVAL_MODE::AREA && outline.Area( true ) < minArea )
poly->DeletePolygonAndTriangulationData( idx, false );
else
zone->SetIsIsland( layer, idx );
}
poly->UpdateTriangulationDataHash();
zone->CalculateFilledArea();
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
}
}
// Now remove islands which are either outside the board edge or fail to meet the minimum
// area requirements
using island_check_return = std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, int>>;
std::vector<std::pair<std::shared_ptr<SHAPE_POLY_SET>, double>> polys_to_check;
// rough estimate to save re-allocation time
polys_to_check.reserve( m_board->GetCopperLayerCount() * aZones.size() );
for( ZONE* zone : aZones )
{
// Don't check for connections on layers that only exist in the zone but
// were disabled in the board
BOARD* board = zone->GetBoard();
LSET zoneCopperLayers = zone->GetLayerSet() & LSET::AllCuMask() & board->GetEnabledLayers();
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 3X the area".
double minArea = (double) zone->GetMinThickness() * zone->GetMinThickness() * 3;
for( PCB_LAYER_ID layer : zoneCopperLayers.Seq() )
{
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( layer ) )
continue;
polys_to_check.emplace_back( zone->GetFilledPolysList( layer ), minArea );
}
}
auto island_lambda =
[&]( int aStart, int aEnd ) -> island_check_return
{
island_check_return retval;
for( int ii = aStart; ii < aEnd && !cancelled; ++ii )
{
auto [poly, minArea] = polys_to_check[ii];
for( int jj = poly->OutlineCount() - 1; jj >= 0; jj-- )
{
SHAPE_POLY_SET island;
SHAPE_POLY_SET intersection;
const SHAPE_LINE_CHAIN& test_poly = poly->Polygon( jj ).front();
double island_area = test_poly.Area();
if( island_area < minArea )
continue;
island.AddOutline( test_poly );
intersection.BooleanIntersection( m_boardOutline, island,
SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
// Nominally, all of these areas should be either inside or outside the
// board outline. So this test should be able to just compare areas (if
// they are equal, you are inside). But in practice, we sometimes have
// slight overlap at the edges, so testing against half-size area acts as
// a fail-safe.
if( intersection.Area() < island_area / 2.0 )
retval.emplace_back( poly, jj );
}
}
return retval;
};
auto island_returns = tp.parallelize_loop( 0, polys_to_check.size(), island_lambda );
cancelled = false;
// Allow island removal threads to finish
for( size_t ii = 0; ii < island_returns.size(); ++ii )
{
std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() )
{
std::future_status status = ret.wait_for( std::chrono::seconds( 0 ) );
while( status != std::future_status::ready )
{
if( m_progressReporter )
{
m_progressReporter->KeepRefreshing();
if( m_progressReporter->IsCancelled() )
cancelled = true;
}
status = ret.wait_for( std::chrono::milliseconds( 100 ) );
}
}
}
if( cancelled )
return false;
for( size_t ii = 0; ii < island_returns.size(); ++ii )
{
std::future<island_check_return>& ret = island_returns[ii];
if( ret.valid() )
{
for( auto& action_item : ret.get() )
action_item.first->DeletePolygonAndTriangulationData( action_item.second, true );
}
}
for( ZONE* zone : aZones )
zone->CalculateFilledArea();
if( aCheck )
{
bool outOfDate = false;
for( ZONE* zone : aZones )
{
// Keepout zones are not filled
if( zone->GetIsRuleArea() )
continue;
for( PCB_LAYER_ID layer : zone->GetLayerSet().Seq() )
{
zone->BuildHashValue( layer );
if( oldFillHashes[ { zone, layer } ] != zone->GetHashValue( layer ) )
outOfDate = true;
}
}
if( outOfDate )
{
KIDIALOG dlg( aParent, _( "Zone fills are out-of-date. Refill?" ),
_( "Confirmation" ), wxOK | wxCANCEL | wxICON_WARNING );
dlg.SetOKCancelLabels( _( "Refill" ), _( "Continue without Refill" ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
if( dlg.ShowModal() == wxID_CANCEL )
return false;
}
else
{
// No need to commit something that hasn't changed (and committing will set
// the modified flag).
return false;
}
}
if( m_progressReporter )
{
if( m_progressReporter->IsCancelled() )
return false;
m_progressReporter->AdvancePhase();
m_progressReporter->KeepRefreshing();
}
return true;
}
/**
* Add a knockout for a pad. The knockout is 'aGap' larger than the pad (which might be
* either the thermal clearance or the electrical clearance).
*/
void ZONE_FILLER::addKnockout( PAD* aPad, PCB_LAYER_ID aLayer, int aGap, SHAPE_POLY_SET& aHoles )
{
if( aPad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
{
SHAPE_POLY_SET poly;
aPad->TransformShapeToPolygon( poly, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
// the pad shape in zone can be its convex hull or the shape itself
if( aPad->GetCustomShapeInZoneOpt() == PADSTACK::CUSTOM_SHAPE_ZONE_MODE::CONVEXHULL )
{
std::vector<VECTOR2I> convex_hull;
BuildConvexHull( convex_hull, poly );
aHoles.NewOutline();
for( const VECTOR2I& pt : convex_hull )
aHoles.Append( pt );
}
else
aHoles.Append( poly );
}
else
{
aPad->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
}
}
/**
* Add a knockout for a pad's hole.
*/
void ZONE_FILLER::addHoleKnockout( PAD* aPad, int aGap, SHAPE_POLY_SET& aHoles )
{
aPad->TransformHoleToPolygon( aHoles, aGap, m_maxError, ERROR_OUTSIDE );
}
/**
* Add a knockout for a graphic item. The knockout is 'aGap' larger than the item (which
* might be either the electrical clearance or the board edge clearance).
*/
void ZONE_FILLER::addKnockout( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aGap,
bool aIgnoreLineWidth, SHAPE_POLY_SET& aHoles )
{
switch( aItem->Type() )
{
case PCB_FIELD_T:
case PCB_TEXT_T:
{
PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );
if( text->IsVisible() )
{
if( text->IsKnockout() )
{
// Knockout text should only leave holes where the text is, not where the copper fill
// around it would be.
PCB_TEXT textCopy = *text;
textCopy.SetIsKnockout( false );
textCopy.TransformShapeToPolygon( aHoles, aLayer, 0, m_maxError, ERROR_OUTSIDE );
}
else
{
text->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
}
}
break;
}
case PCB_TEXTBOX_T:
case PCB_TABLE_T:
case PCB_SHAPE_T:
case PCB_TARGET_T:
aItem->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE,
aIgnoreLineWidth );
break;
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
{
PCB_DIMENSION_BASE* dim = static_cast<PCB_DIMENSION_BASE*>( aItem );
dim->TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE, false );
dim->PCB_TEXT::TransformShapeToPolygon( aHoles, aLayer, aGap, m_maxError, ERROR_OUTSIDE );
break;
}
default:
break;
}
}
/**
* Removes thermal reliefs from the shape for any pads connected to the zone. Does NOT add
* in spokes, which must be done later.
*/
void ZONE_FILLER::knockoutThermalReliefs( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aFill,
std::vector<PAD*>& aThermalConnectionPads,
std::vector<PAD*>& aNoConnectionPads )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
ZONE_CONNECTION connection;
DRC_CONSTRAINT constraint;
int padClearance;
std::shared_ptr<SHAPE> padShape;
int holeClearance;
SHAPE_POLY_SET holes;
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
BOX2I padBBox = pad->GetBoundingBox();
padBBox.Inflate( m_worstClearance );
if( !padBBox.Intersects( aZone->GetBoundingBox() ) )
continue;
bool noConnection = pad->GetNetCode() != aZone->GetNetCode();
if( !aZone->IsTeardropArea() )
{
if( aZone->GetNetCode() == 0
|| pad->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
{
noConnection = true;
}
}
if( noConnection )
{
// collect these for knockout in buildCopperItemClearances()
aNoConnectionPads.push_back( pad );
continue;
}
if( aZone->IsTeardropArea() )
{
connection = ZONE_CONNECTION::FULL;
}
else
{
constraint = bds.m_DRCEngine->EvalZoneConnection( pad, aZone, aLayer );
connection = constraint.m_ZoneConnection;
}
if( connection == ZONE_CONNECTION::THERMAL && !pad->CanFlashLayer( aLayer ) )
connection = ZONE_CONNECTION::NONE;
switch( connection )
{
case ZONE_CONNECTION::THERMAL:
padShape = pad->GetEffectiveShape( aLayer, FLASHING::ALWAYS_FLASHED );
if( aFill.Collide( padShape.get(), 0 ) )
{
constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad,
aZone, aLayer );
padClearance = constraint.GetValue().Min();
aThermalConnectionPads.push_back( pad );
addKnockout( pad, aLayer, padClearance, holes );
}
break;
case ZONE_CONNECTION::NONE:
constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT, pad,
aZone, aLayer );
if( constraint.GetValue().Min() > aZone->GetLocalClearance().value() )
padClearance = constraint.GetValue().Min();
else
padClearance = aZone->GetLocalClearance().value();
if( pad->FlashLayer( aLayer ) )
{
addKnockout( pad, aLayer, padClearance, holes );
}
else if( pad->GetDrillSize().x > 0 )
{
constraint = bds.m_DRCEngine->EvalRules( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
pad, aZone, aLayer );
if( constraint.GetValue().Min() > padClearance )
holeClearance = constraint.GetValue().Min();
else
holeClearance = padClearance;
pad->TransformHoleToPolygon( holes, holeClearance, m_maxError, ERROR_OUTSIDE );
}
break;
default:
// No knockout
continue;
}
}
}
aFill.BooleanSubtract( holes, SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes clearance from the shape for copper items which share the zone's layer but are
* not connected to it.
*/
void ZONE_FILLER::buildCopperItemClearances( const ZONE* aZone, PCB_LAYER_ID aLayer,
const std::vector<PAD*>& aNoConnectionPads,
SHAPE_POLY_SET& aHoles )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
long ticker = 0;
auto checkForCancel =
[&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
{
return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
};
// A small extra clearance to be sure actual track clearances are not smaller than
// requested clearance due to many approximations in calculations, like arc to segment
// approx, rounding issues, etc.
BOX2I zone_boundingbox = aZone->GetBoundingBox();
int extra_margin = pcbIUScale.mmToIU( ADVANCED_CFG::GetCfg().m_ExtraClearance );
// Items outside the zone bounding box are skipped, so it needs to be inflated by the
// largest clearance value found in the netclasses and rules
zone_boundingbox.Inflate( m_worstClearance + extra_margin );
auto evalRulesForItems =
[&bds]( DRC_CONSTRAINT_T aConstraint, const BOARD_ITEM* a, const BOARD_ITEM* b,
PCB_LAYER_ID aEvalLayer ) -> int
{
DRC_CONSTRAINT c = bds.m_DRCEngine->EvalRules( aConstraint, a, b, aEvalLayer );
if( c.IsNull() )
return -1;
else
return c.GetValue().Min();
};
// Add non-connected pad clearances
//
auto knockoutPadClearance =
[&]( PAD* aPad )
{
int init_gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone, aPad, aLayer );
int gap = init_gap;
bool hasHole = aPad->GetDrillSize().x > 0;
bool flashLayer = aPad->FlashLayer( aLayer );
bool platedHole = hasHole && aPad->GetAttribute() == PAD_ATTRIB::PTH;
if( flashLayer || platedHole )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
}
if( flashLayer && gap >= 0 )
addKnockout( aPad, aLayer, gap + extra_margin, aHoles );
if( hasHole )
{
// NPTH do not need copper clearance gaps to their holes
if( aPad->GetAttribute() == PAD_ATTRIB::NPTH )
gap = init_gap;
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
aZone, aPad, aLayer ) );
if( gap >= 0 )
addHoleKnockout( aPad, gap + extra_margin, aHoles );
}
};
for( PAD* pad : aNoConnectionPads )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutPadClearance( pad );
}
// Add non-connected track clearances
//
auto knockoutTrackClearance =
[&]( PCB_TRACK* aTrack )
{
if( aTrack->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool sameNet = aTrack->GetNetCode() == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
sameNet = false;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aTrack, aLayer );
if( aTrack->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->GetZoneLayerOverride( aLayer ) == ZLO_FORCE_NO_ZONE_CONNECTION )
sameNet = false;
}
if( !sameNet )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aTrack, aLayer ) );
}
if( aTrack->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( aTrack );
if( via->FlashLayer( aLayer ) && gap > 0 )
{
via->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
gap = std::max( gap, evalRulesForItems( PHYSICAL_HOLE_CLEARANCE_CONSTRAINT,
aZone, via, aLayer ) );
if( !sameNet )
{
gap = std::max( gap, evalRulesForItems( HOLE_CLEARANCE_CONSTRAINT,
aZone, via, aLayer ) );
}
if( gap >= 0 )
{
int radius = via->GetDrillValue() / 2;
TransformCircleToPolygon( aHoles, via->GetPosition(),
radius + gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
}
else
{
if( gap >= 0 )
{
aTrack->TransformShapeToPolygon( aHoles, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
}
}
}
};
for( PCB_TRACK* track : m_board->Tracks() )
{
if( !track->IsOnLayer( aLayer ) )
continue;
if( checkForCancel( m_progressReporter ) )
return;
knockoutTrackClearance( track );
}
// Add graphic item clearances.
//
auto knockoutGraphicClearance =
[&]( BOARD_ITEM* aItem )
{
int shapeNet = -1;
if( aItem->Type() == PCB_SHAPE_T )
shapeNet = static_cast<PCB_SHAPE*>( aItem )->GetNetCode();
bool sameNet = shapeNet == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
sameNet = false;
// A item on the Edge_Cuts or Margin is always seen as on any layer:
if( aItem->IsOnLayer( aLayer )
|| aItem->IsOnLayer( Edge_Cuts )
|| aItem->IsOnLayer( Margin ) )
{
if( aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
bool ignoreLineWidths = false;
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer );
if( aItem->IsOnLayer( aLayer ) && !sameNet )
{
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer ) );
}
else if( aItem->IsOnLayer( Edge_Cuts ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer ) );
ignoreLineWidths = true;
}
else if( aItem->IsOnLayer( Margin ) )
{
gap = std::max( gap, evalRulesForItems( EDGE_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer ) );
}
if( gap >= 0 )
{
gap += extra_margin;
addKnockout( aItem, aLayer, gap, ignoreLineWidths, aHoles );
}
}
}
};
auto knockoutCourtyardClearance =
[&]( FOOTPRINT* aFootprint )
{
if( aFootprint->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int gap = evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT, aZone,
aFootprint, aLayer );
if( gap == 0 )
{
aHoles.Append( aFootprint->GetCourtyard( aLayer ) );
}
else if( gap > 0 )
{
SHAPE_POLY_SET hole = aFootprint->GetCourtyard( aLayer );
hole.Inflate( gap, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
aHoles.Append( hole );
}
}
};
for( FOOTPRINT* footprint : m_board->Footprints() )
{
knockoutCourtyardClearance( footprint );
knockoutGraphicClearance( &footprint->Reference() );
knockoutGraphicClearance( &footprint->Value() );
std::set<PAD*> allowedNetTiePads;
// Don't knock out holes for graphic items which implement a net-tie to the zone's net
// on the layer being filled.
if( footprint->IsNetTie() )
{
for( PAD* pad : footprint->Pads() )
{
bool sameNet = pad->GetNetCode() == aZone->GetNetCode();
if( !aZone->IsTeardropArea() && aZone->GetNetCode() == 0 )
sameNet = false;
if( sameNet )
{
if( pad->IsOnLayer( aLayer ) )
allowedNetTiePads.insert( pad );
for( PAD* other : footprint->GetNetTiePads( pad ) )
{
if( other->IsOnLayer( aLayer ) )
allowedNetTiePads.insert( other );
}
}
}
}
for( BOARD_ITEM* item : footprint->GraphicalItems() )
{
if( checkForCancel( m_progressReporter ) )
return;
BOX2I itemBBox = item->GetBoundingBox();
if( !zone_boundingbox.Intersects( itemBBox ) )
continue;
bool skipItem = false;
if( item->IsOnLayer( aLayer ) )
{
std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape();
for( PAD* pad : allowedNetTiePads )
{
if( pad->GetBoundingBox().Intersects( itemBBox )
&& pad->GetEffectiveShape( aLayer )->Collide( itemShape.get() ) )
{
skipItem = true;
break;
}
}
}
if( !skipItem )
knockoutGraphicClearance( item );
}
}
for( BOARD_ITEM* item : m_board->Drawings() )
{
if( checkForCancel( m_progressReporter ) )
return;
knockoutGraphicClearance( item );
}
// Add non-connected zone clearances
//
auto knockoutZoneClearance =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetBoundingBox().Intersects( zone_boundingbox ) )
{
if( aKnockout->GetIsRuleArea() )
{
// Keepouts use outline with no clearance
aKnockout->TransformSmoothedOutlineToPolygon( aHoles, 0, m_maxError,
ERROR_OUTSIDE, nullptr );
}
else
{
int gap = std::max( 0, evalRulesForItems( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aKnockout, aLayer ) );
gap = std::max( gap, evalRulesForItems( CLEARANCE_CONSTRAINT,
aZone, aKnockout, aLayer ) );
SHAPE_POLY_SET poly;
aKnockout->TransformShapeToPolygon( poly, aLayer, gap + extra_margin,
m_maxError, ERROR_OUTSIDE );
aHoles.Append( poly );
}
}
};
for( ZONE* otherZone : m_board->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
// Negative clearance permits zones to short
if( evalRulesForItems( CLEARANCE_CONSTRAINT, aZone, otherZone, aLayer ) < 0 )
continue;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
knockoutZoneClearance( otherZone );
}
else if( otherZone->HigherPriority( aZone ) )
{
if( !otherZone->SameNet( aZone ) )
knockoutZoneClearance( otherZone );
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( ZONE* otherZone : footprint->Zones() )
{
if( checkForCancel( m_progressReporter ) )
return;
if( otherZone->GetIsRuleArea() )
{
if( otherZone->GetDoNotAllowCopperPour() && !aZone->IsTeardropArea() )
knockoutZoneClearance( otherZone );
}
else if( otherZone->HigherPriority( aZone ) )
{
if( !otherZone->SameNet( aZone ) )
knockoutZoneClearance( otherZone );
}
}
}
aHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
}
/**
* Removes the outlines of higher-proirity zones with the same net. These zones should be
* in charge of the fill parameters within their own outlines.
*/
void ZONE_FILLER::subtractHigherPriorityZones( const ZONE* aZone, PCB_LAYER_ID aLayer,
SHAPE_POLY_SET& aRawFill )
{
BOX2I zoneBBox = aZone->GetBoundingBox();
auto knockoutZoneOutline =
[&]( ZONE* aKnockout )
{
// If the zones share no common layers
if( !aKnockout->GetLayerSet().test( aLayer ) )
return;
if( aKnockout->GetBoundingBox().Intersects( zoneBBox ) )
{
// Processing of arc shapes in zones is not yet supported because Clipper
// can't do boolean operations on them. The poly outline must be converted to
// segments first.
SHAPE_POLY_SET outline = aKnockout->Outline()->CloneDropTriangulation();
outline.ClearArcs();
aRawFill.BooleanSubtract( outline, SHAPE_POLY_SET::PM_FAST );
}
};
for( ZONE* otherZone : m_board->Zones() )
{
// Don't use the `HigherPriority()` check here because we _only_ want to knock out zones
// with explicitly higher priorities, not those with equal priorities
if( otherZone->SameNet( aZone )
&& otherZone->GetAssignedPriority() > aZone->GetAssignedPriority() )
{
// Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() )
knockoutZoneOutline( otherZone );
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( ZONE* otherZone : footprint->Zones() )
{
if( otherZone->SameNet( aZone ) && otherZone->HigherPriority( aZone ) )
{
// Do not remove teardrop area: it is not useful and not good
if( !otherZone->IsTeardropArea() )
knockoutZoneOutline( otherZone );
}
}
}
}
void ZONE_FILLER::connect_nearby_polys( SHAPE_POLY_SET& aPolys, double aDistance )
{
if( aPolys.OutlineCount() < 1 )
return;
VERTEX_CONNECTOR vs( aPolys.BBoxFromCaches(), aPolys, aDistance );
vs.FindResults();
// This cannot be a reference because we need to do the comparison below while
// changing the values
std::map<int, std::vector<std::pair<int, VECTOR2I>>> insertion_points;
for( const RESULTS& result : vs.GetResults() )
{
SHAPE_LINE_CHAIN& line1 = aPolys.Outline( result.m_outline1 );
SHAPE_LINE_CHAIN& line2 = aPolys.Outline( result.m_outline2 );
VECTOR2I pt1 = line1.CPoint( result.m_vertex1 );
VECTOR2I pt2 = line2.CPoint( result.m_vertex2 );
// We want to insert the existing point first so that we can place the new point
// between the two points at the same location.
insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt1 } );
insertion_points[result.m_outline1].push_back( { result.m_vertex1, pt2 } );
}
for( auto& [outline, vertices] : insertion_points )
{
SHAPE_LINE_CHAIN& line = aPolys.Outline( outline );
// Stable sort here because we want to make sure that we are inserting pt1 first and
// pt2 second but still sorting the rest of the indices from highest to lowest.
// This allows us to insert into the existing polygon without modifying the future
// insertion points.
std::stable_sort( vertices.begin(), vertices.end(),
[]( const std::pair<int, VECTOR2I>& a, const std::pair<int, VECTOR2I>& b )
{
return a.first > b.first;
} );
for( const auto& [vertex, pt] : vertices )
line.Insert( vertex + 1, pt ); // +1 here because we want to insert after the existing point
}
}
#define DUMP_POLYS_TO_COPPER_LAYER( a, b, c ) \
{ if( m_debugZoneFiller && aDebugLayer == b ) \
{ \
m_board->SetLayerName( b, c ); \
SHAPE_POLY_SET d = a; \
d.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); \
aFillPolys = d; \
return false; \
} \
}
/*
* Note that aSmoothedOutline is larger than the zone where it intersects with other, same-net
* zones. This is to prevent the re-inflation post min-width trimming from createing divots
* between adjacent zones. The final aMaxExtents trimming will remove these areas from the final
* fill.
*/
bool ZONE_FILLER::fillCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer, PCB_LAYER_ID aDebugLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
const SHAPE_POLY_SET& aMaxExtents, SHAPE_POLY_SET& aFillPolys )
{
m_maxError = m_board->GetDesignSettings().m_MaxError;
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = pcbIUScale.mmToIU( 0.001 );
// Solid polygons are deflated and inflated during calculations. Deflating doesn't cause
// issues, but inflate is tricky as it can create excessively long and narrow spikes for
// acute angles.
// ALLOW_ACUTE_CORNERS cannot be used due to the spike problem.
// CHAMFER_ACUTE_CORNERS is tempting, but can still produce spikes in some unusual
// circumstances (https://gitlab.com/kicad/code/kicad/-/issues/5581).
// It's unclear if ROUND_ACUTE_CORNERS would have the same issues, but is currently avoided
// as a "less-safe" option.
// ROUND_ALL_CORNERS produces the uniformly nicest shapes, but also a lot of segments.
// CHAMFER_ALL_CORNERS improves the segment count.
CORNER_STRATEGY fastCornerStrategy = CORNER_STRATEGY::CHAMFER_ALL_CORNERS;
CORNER_STRATEGY cornerStrategy = CORNER_STRATEGY::ROUND_ALL_CORNERS;
std::vector<PAD*> thermalConnectionPads;
std::vector<PAD*> noConnectionPads;
std::deque<SHAPE_LINE_CHAIN> thermalSpokes;
SHAPE_POLY_SET clearanceHoles;
aFillPolys = aSmoothedOutline;
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In1_Cu, wxT( "smoothed-outline" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Knockout thermal reliefs.
*/
knockoutThermalReliefs( aZone, aLayer, aFillPolys, thermalConnectionPads, noConnectionPads );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In2_Cu, wxT( "minus-thermal-reliefs" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Knockout electrical clearances.
*/
buildCopperItemClearances( aZone, aLayer, noConnectionPads, clearanceHoles );
DUMP_POLYS_TO_COPPER_LAYER( clearanceHoles, In3_Cu, wxT( "clearance-holes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Add thermal relief spokes.
*/
buildThermalSpokes( aZone, aLayer, thermalConnectionPads, thermalSpokes );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Create a temporary zone that we can hit-test spoke-ends against. It's only temporary
// because the "real" subtract-clearance-holes has to be done after the spokes are added.
static const bool USE_BBOX_CACHES = true;
SHAPE_POLY_SET testAreas = aFillPolys.CloneDropTriangulation();
testAreas.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In4_Cu, wxT( "minus-clearance-holes" ) );
// Prune features that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
{
testAreas.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In5_Cu, wxT( "spoke-test-deflated" ) );
testAreas.Inflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
DUMP_POLYS_TO_COPPER_LAYER( testAreas, In6_Cu, wxT( "spoke-test-reinflated" ) );
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
// Spoke-end-testing is hugely expensive so we generate cached bounding-boxes to speed
// things up a bit.
testAreas.BuildBBoxCaches();
int interval = 0;
SHAPE_POLY_SET debugSpokes;
for( const SHAPE_LINE_CHAIN& spoke : thermalSpokes )
{
const VECTOR2I& testPt = spoke.CPoint( 3 );
// Hit-test against zone body
if( testAreas.Contains( testPt, -1, 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke );
continue;
}
if( interval++ > 400 )
{
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
interval = 0;
}
// Hit-test against other spokes
for( const SHAPE_LINE_CHAIN& other : thermalSpokes )
{
// Hit test in both directions to avoid interactions with round-off errors.
// (See https://gitlab.com/kicad/code/kicad/-/issues/13316.)
if( &other != &spoke
&& other.PointInside( testPt, 1, USE_BBOX_CACHES )
&& spoke.PointInside( other.CPoint( 3 ), 1, USE_BBOX_CACHES ) )
{
if( m_debugZoneFiller )
debugSpokes.AddOutline( spoke );
aFillPolys.AddOutline( spoke );
break;
}
}
}
DUMP_POLYS_TO_COPPER_LAYER( debugSpokes, In7_Cu, wxT( "spokes" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In8_Cu, wxT( "after-spoke-trimming" ) );
/* -------------------------------------------------------------------------------------
* Prune features that don't meet minimum-width criteria
*/
if( half_min_width - epsilon > epsilon )
aFillPolys.Deflate( half_min_width - epsilon, fastCornerStrategy, m_maxError );
// Min-thickness is the web thickness. On the other hand, a blob min-thickness by
// min-thickness is not useful. Since there's no obvious definition of web vs. blob, we
// arbitrarily choose "at least 2X min-thickness on one axis". (Since we're doing this
// during the deflated state, that means we test for "at least min-thickness".)
for( int ii = aFillPolys.OutlineCount() - 1; ii >= 0; ii-- )
{
std::vector<SHAPE_LINE_CHAIN>& island = aFillPolys.Polygon( ii );
BOX2I islandExtents;
for( const VECTOR2I& pt : island.front().CPoints() )
{
islandExtents.Merge( pt );
if( islandExtents.GetSizeMax() > aZone->GetMinThickness() )
break;
}
if( islandExtents.GetSizeMax() < aZone->GetMinThickness() )
aFillPolys.DeletePolygon( ii );
}
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In9_Cu, wxT( "deflated" ) );
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Process the hatch pattern (note that we do this while deflated)
*/
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
{
if( !addHatchFillTypeOnZone( aZone, aLayer, aDebugLayer, aFillPolys ) )
return false;
}
else
{
/* ---------------------------------------------------------------------------------
* Connect nearby polygons with zero-width lines in order to ensure correct
* re-inflation.
*/
aFillPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
connect_nearby_polys( aFillPolys, aZone->GetMinThickness() );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In10_Cu, wxT( "connected-nearby-polys" ) );
}
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
/* -------------------------------------------------------------------------------------
* Finish minimum-width pruning by re-inflating
*/
if( half_min_width - epsilon > epsilon )
aFillPolys.Inflate( half_min_width - epsilon, cornerStrategy, m_maxError, true );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In15_Cu, wxT( "after-reinflating" ) );
/* -------------------------------------------------------------------------------------
* Ensure additive changes (thermal stubs and inflating acute corners) do not add copper
* outside the zone boundary, inside the clearance holes, or between otherwise isolated
* islands
*/
for( PAD* pad : thermalConnectionPads )
addHoleKnockout( pad, 0, clearanceHoles );
aFillPolys.BooleanIntersection( aMaxExtents, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In16_Cu, wxT( "after-trim-to-outline" ) );
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In17_Cu, wxT( "after-trim-to-clearance-holes" ) );
/* -------------------------------------------------------------------------------------
* Lastly give any same-net but higher-priority zones control over their own area.
*/
subtractHigherPriorityZones( aZone, aLayer, aFillPolys );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In18_Cu, wxT( "minus-higher-priority-zones" ) );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
return true;
}
bool ZONE_FILLER::fillNonCopperZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
const SHAPE_POLY_SET& aSmoothedOutline,
SHAPE_POLY_SET& aFillPolys )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
BOX2I zone_boundingbox = aZone->GetBoundingBox();
SHAPE_POLY_SET clearanceHoles;
long ticker = 0;
auto checkForCancel =
[&ticker]( PROGRESS_REPORTER* aReporter ) -> bool
{
return aReporter && ( ticker++ % 50 ) == 0 && aReporter->IsCancelled();
};
auto knockoutGraphicClearance =
[&]( BOARD_ITEM* aItem )
{
if( aItem->IsKnockout() && aItem->IsOnLayer( aLayer )
&& aItem->GetBoundingBox().Intersects( zone_boundingbox ) )
{
DRC_CONSTRAINT cc = bds.m_DRCEngine->EvalRules( PHYSICAL_CLEARANCE_CONSTRAINT,
aZone, aItem, aLayer );
addKnockout( aItem, aLayer, cc.GetValue().Min(), false, clearanceHoles );
}
};
for( FOOTPRINT* footprint : m_board->Footprints() )
{
if( checkForCancel( m_progressReporter ) )
return false;
knockoutGraphicClearance( &footprint->Reference() );
knockoutGraphicClearance( &footprint->Value() );
for( BOARD_ITEM* item : footprint->GraphicalItems() )
knockoutGraphicClearance( item );
}
for( BOARD_ITEM* item : m_board->Drawings() )
{
if( checkForCancel( m_progressReporter ) )
return false;
knockoutGraphicClearance( item );
}
aFillPolys = aSmoothedOutline;
aFillPolys.BooleanSubtract( clearanceHoles, SHAPE_POLY_SET::PM_FAST );
for( ZONE* keepout : m_board->Zones() )
{
if( !keepout->GetIsRuleArea() )
continue;
if( !keepout->HasKeepoutParametersSet() )
continue;
if( keepout->GetDoNotAllowCopperPour() && keepout->IsOnLayer( aLayer ) )
{
if( keepout->GetBoundingBox().Intersects( zone_boundingbox ) )
aFillPolys.BooleanSubtract( *keepout->Outline(), SHAPE_POLY_SET::PM_FAST );
}
}
// Features which are min_width should survive pruning; features that are *less* than
// min_width should not. Therefore we subtract epsilon from the min_width when
// deflating/inflating.
int half_min_width = aZone->GetMinThickness() / 2;
int epsilon = pcbIUScale.mmToIU( 0.001 );
aFillPolys.Deflate( half_min_width - epsilon, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, m_maxError );
// Remove the non filled areas due to the hatch pattern
if( aZone->GetFillMode() == ZONE_FILL_MODE::HATCH_PATTERN )
{
if( !addHatchFillTypeOnZone( aZone, aLayer, aLayer, aFillPolys ) )
return false;
}
// Re-inflate after pruning of areas that don't meet minimum-width criteria
if( half_min_width - epsilon > epsilon )
aFillPolys.Inflate( half_min_width - epsilon, CORNER_STRATEGY::ROUND_ALL_CORNERS, m_maxError );
aFillPolys.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
return true;
}
/*
* Build the filled solid areas data from real outlines (stored in m_Poly)
* The solid areas can be more than one on copper layers, and do not have holes
* ( holes are linked by overlapping segments to the main outline)
*/
bool ZONE_FILLER::fillSingleZone( ZONE* aZone, PCB_LAYER_ID aLayer, SHAPE_POLY_SET& aFillPolys )
{
SHAPE_POLY_SET* boardOutline = m_brdOutlinesValid ? &m_boardOutline : nullptr;
SHAPE_POLY_SET maxExtents;
SHAPE_POLY_SET smoothedPoly;
PCB_LAYER_ID debugLayer = UNDEFINED_LAYER;
if( m_debugZoneFiller && LSET::InternalCuMask().Contains( aLayer ) )
{
debugLayer = aLayer;
aLayer = F_Cu;
}
if( !aZone->BuildSmoothedPoly( maxExtents, aLayer, boardOutline, &smoothedPoly ) )
return false;
if( m_progressReporter && m_progressReporter->IsCancelled() )
return false;
if( aZone->IsOnCopperLayer() )
{
if( fillCopperZone( aZone, aLayer, debugLayer, smoothedPoly, maxExtents, aFillPolys ) )
aZone->SetNeedRefill( false );
}
else
{
if( fillNonCopperZone( aZone, aLayer, smoothedPoly, aFillPolys ) )
aZone->SetNeedRefill( false );
}
return true;
}
/**
* Function buildThermalSpokes
*/
void ZONE_FILLER::buildThermalSpokes( const ZONE* aZone, PCB_LAYER_ID aLayer,
const std::vector<PAD*>& aSpokedPadsList,
std::deque<SHAPE_LINE_CHAIN>& aSpokesList )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
BOX2I zoneBB = aZone->GetBoundingBox();
DRC_CONSTRAINT constraint;
int zone_half_width = aZone->GetMinThickness() / 2;
zoneBB.Inflate( std::max( bds.GetBiggestClearanceValue(), aZone->GetLocalClearance().value() ) );
// Is a point on the boundary of the polygon inside or outside?
// The boundary may be off by MaxError
int epsilon = bds.m_MaxError;
for( PAD* pad : aSpokedPadsList )
{
// We currently only connect to pads, not pad holes
if( !pad->IsOnLayer( aLayer ) )
continue;
constraint = bds.m_DRCEngine->EvalRules( THERMAL_RELIEF_GAP_CONSTRAINT, pad, aZone, aLayer );
int thermalReliefGap = constraint.GetValue().Min();
constraint = bds.m_DRCEngine->EvalRules( THERMAL_SPOKE_WIDTH_CONSTRAINT, pad, aZone, aLayer );
int spoke_w = constraint.GetValue().Opt();
// Spoke width should ideally be smaller than the pad minor axis.
// Otherwise the thermal shape is not really a thermal relief,
// and the algo to count the actual number of spokes can fail
int spoke_max_allowed_w = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
spoke_w = std::clamp( spoke_w, constraint.Value().Min(), constraint.Value().Max() );
// ensure the spoke width is smaller than the pad minor size
spoke_w = std::min( spoke_w, spoke_max_allowed_w );
// Cannot create stubs having a width < zone min thickness
if( spoke_w < aZone->GetMinThickness() )
continue;
int spoke_half_w = spoke_w / 2;
// Quick test here to possibly save us some work
BOX2I itemBB = pad->GetBoundingBox();
itemBB.Inflate( thermalReliefGap + epsilon );
if( !( itemBB.Intersects( zoneBB ) ) )
continue;
bool customSpokes = false;
if( pad->GetShape( aLayer ) == PAD_SHAPE::CUSTOM )
{
for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
{
if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
{
customSpokes = true;
break;
}
}
}
// Thermal spokes consist of square-ended segments from the pad center to points just
// outside the thermal relief. The outside end has an extra center point (which must be
// at idx 3) which is used for testing whether or not the spoke connects to copper in the
// parent zone.
auto buildSpokesFromOrigin =
[&]( const BOX2I& box, EDA_ANGLE angle )
{
VECTOR2I center = box.GetCenter();
VECTOR2I half_size( box.GetWidth() / 2, box.GetHeight() / 2 );
// Function to find intersection of line with box edge
auto intersectLineBox = [&](const VECTOR2D& direction) -> VECTOR2I {
double dx = direction.x;
double dy = direction.y;
// Short-circuit the axis cases because they will be degenerate in the
// intersection test
if( direction.x == 0 )
return VECTOR2I( 0, dy * half_size.y );
else if( direction.y == 0 )
return VECTOR2I( dx * half_size.x, 0 );
// We are going to intersect with one side or the other. Whichever
// we hit first is the fraction of the spoke length we keep
double tx = std::min( half_size.x / std::abs( dx ),
half_size.y / std::abs( dy ) );
return VECTOR2I( dx * tx, dy * tx );
};
// Precalculate angles for four cardinal directions
const EDA_ANGLE angles[4] = {
EDA_ANGLE( 0.0, DEGREES_T ) + angle, // Right
EDA_ANGLE( 90.0, DEGREES_T ) + angle, // Up
EDA_ANGLE( 180.0, DEGREES_T ) + angle, // Left
EDA_ANGLE( 270.0, DEGREES_T ) + angle // Down
};
// Generate four spokes in cardinal directions
for( const EDA_ANGLE& spokeAngle : angles )
{
VECTOR2D direction( spokeAngle.Cos(), spokeAngle.Sin() );
VECTOR2D perpendicular = direction.Perpendicular();
VECTOR2I intersection = intersectLineBox( direction );
VECTOR2I spoke_side = perpendicular.Resize( spoke_half_w );
SHAPE_LINE_CHAIN spoke;
spoke.Append( center + spoke_side );
spoke.Append( center - spoke_side );
spoke.Append( center + intersection - spoke_side );
spoke.Append( center + intersection ); // test pt
spoke.Append( center + intersection + spoke_side );
spoke.SetClosed( true );
aSpokesList.push_back( std::move( spoke ) );
}
};
if( customSpokes )
{
SHAPE_POLY_SET thermalPoly;
SHAPE_LINE_CHAIN thermalOutline;
pad->TransformShapeToPolygon( thermalPoly, aLayer, thermalReliefGap + epsilon,
m_maxError, ERROR_OUTSIDE );
if( thermalPoly.OutlineCount() )
thermalOutline = thermalPoly.Outline( 0 );
for( const std::shared_ptr<PCB_SHAPE>& primitive : pad->GetPrimitives( aLayer ) )
{
if( primitive->IsProxyItem() && primitive->GetShape() == SHAPE_T::SEGMENT )
{
SEG seg( primitive->GetStart(), primitive->GetEnd() );
SHAPE_LINE_CHAIN::INTERSECTIONS intersections;
RotatePoint( seg.A, pad->GetOrientation() );
RotatePoint( seg.B, pad->GetOrientation() );
seg.A += pad->ShapePos( aLayer );
seg.B += pad->ShapePos( aLayer );
// Make sure seg.A is the origin
if( !pad->GetEffectivePolygon( aLayer, ERROR_OUTSIDE )->Contains( seg.A ) )
seg.Reverse();
// Trim seg.B to the thermal outline
if( thermalOutline.Intersect( seg, intersections ) )
{
seg.B = intersections.front().p;
VECTOR2I offset = ( seg.B - seg.A ).Perpendicular().Resize( spoke_half_w );
SHAPE_LINE_CHAIN spoke;
spoke.Append( seg.A + offset );
spoke.Append( seg.A - offset );
spoke.Append( seg.B - offset );
spoke.Append( seg.B ); // test pt
spoke.Append( seg.B + offset );
spoke.SetClosed( true );
aSpokesList.push_back( std::move( spoke ) );
}
}
}
}
else
{
// Since the bounding-box needs to be correclty rotated we use a dummy pad to keep
// from dirtying the real pad's cached shapes.
PAD dummy_pad( *pad );
dummy_pad.SetOrientation( ANGLE_0 );
// Spokes are from center of pad shape, not from hole. So the dummy pad has no shape
// offset and is at position 0,0
dummy_pad.SetPosition( VECTOR2I( 0, 0 ) );
dummy_pad.SetOffset( aLayer, VECTOR2I( 0, 0 ) );
BOX2I spokesBox = dummy_pad.GetBoundingBox();
// Add the half width of the zone mininum width to the inflate amount to account for
// the fact that the deflation procedure will shrink the results by half the half the
// zone min width
spokesBox.Inflate( thermalReliefGap + epsilon + zone_half_width );
// This is a touchy case because the bounding box for circles overshoots the mark
// when rotated at 45 degrees. So we just build spokes at 0 degrees and rotate
// them later.
if( pad->GetShape( aLayer ) == PAD_SHAPE::CIRCLE
|| ( pad->GetShape( aLayer ) == PAD_SHAPE::OVAL
&& pad->GetSizeX() == pad->GetSizeY() ) )
{
buildSpokesFromOrigin( spokesBox, ANGLE_0 );
if( pad->GetThermalSpokeAngle() != ANGLE_0 )
{
//Rotate the last four elements of aspokeslist
for( auto it = aSpokesList.rbegin(); it != aSpokesList.rbegin() + 4; ++it )
it->Rotate( pad->GetThermalSpokeAngle() );
}
}
else
{
buildSpokesFromOrigin( spokesBox, pad->GetThermalSpokeAngle() );
}
auto spokeIter = aSpokesList.rbegin();
for( int ii = 0; ii < 4; ++ii, ++spokeIter )
{
spokeIter->Rotate( pad->GetOrientation() );
spokeIter->Move( pad->ShapePos( aLayer ) );
}
// Remove group membership from dummy item before deleting
dummy_pad.SetParentGroup( nullptr );
}
}
for( size_t ii = 0; ii < aSpokesList.size(); ++ii )
aSpokesList[ii].GenerateBBoxCache();
}
bool ZONE_FILLER::addHatchFillTypeOnZone( const ZONE* aZone, PCB_LAYER_ID aLayer,
PCB_LAYER_ID aDebugLayer, SHAPE_POLY_SET& aFillPolys )
{
// Build grid:
// obviously line thickness must be > zone min thickness.
// It can happens if a board file was edited by hand by a python script
// Use 1 micron margin to be *sure* there is no issue in Gerber files
// (Gbr file unit = 1 or 10 nm) due to some truncation in coordinates or calculations
// This margin also avoid problems due to rounding coordinates in next calculations
// that can create incorrect polygons
int thickness = std::max( aZone->GetHatchThickness(),
aZone->GetMinThickness() + pcbIUScale.mmToIU( 0.001 ) );
int linethickness = thickness - aZone->GetMinThickness();
int gridsize = thickness + aZone->GetHatchGap();
int maxError = m_board->GetDesignSettings().m_MaxError;
SHAPE_POLY_SET filledPolys = aFillPolys.CloneDropTriangulation();
// Use a area that contains the rotated bbox by orientation, and after rotate the result
// by -orientation.
if( !aZone->GetHatchOrientation().IsZero() )
filledPolys.Rotate( - aZone->GetHatchOrientation() );
BOX2I bbox = filledPolys.BBox( 0 );
// Build hole shape
// the hole size is aZone->GetHatchGap(), but because the outline thickness
// is aZone->GetMinThickness(), the hole shape size must be larger
SHAPE_LINE_CHAIN hole_base;
int hole_size = aZone->GetHatchGap() + aZone->GetMinThickness();
VECTOR2I corner( 0, 0 );;
hole_base.Append( corner );
corner.x += hole_size;
hole_base.Append( corner );
corner.y += hole_size;
hole_base.Append( corner );
corner.x = 0;
hole_base.Append( corner );
hole_base.SetClosed( true );
// Calculate minimal area of a grid hole.
// All holes smaller than a threshold will be removed
double minimal_hole_area = hole_base.Area() * aZone->GetHatchHoleMinArea();
// Now convert this hole to a smoothed shape:
if( aZone->GetHatchSmoothingLevel() > 0 )
{
// the actual size of chamfer, or rounded corner radius is the half size
// of the HatchFillTypeGap scaled by aZone->GetHatchSmoothingValue()
// aZone->GetHatchSmoothingValue() = 1.0 is the max value for the chamfer or the
// radius of corner (radius = half size of the hole)
int smooth_value = KiROUND( aZone->GetHatchGap()
* aZone->GetHatchSmoothingValue() / 2 );
// Minimal optimization:
// make smoothing only for reasonable smooth values, to avoid a lot of useless segments
// and if the smooth value is small, use chamfer even if fillet is requested
#define SMOOTH_MIN_VAL_MM 0.02
#define SMOOTH_SMALL_VAL_MM 0.04
if( smooth_value > pcbIUScale.mmToIU( SMOOTH_MIN_VAL_MM ) )
{
SHAPE_POLY_SET smooth_hole;
smooth_hole.AddOutline( hole_base );
int smooth_level = aZone->GetHatchSmoothingLevel();
if( smooth_value < pcbIUScale.mmToIU( SMOOTH_SMALL_VAL_MM ) && smooth_level > 1 )
smooth_level = 1;
// Use a larger smooth_value to compensate the outline tickness
// (chamfer is not visible is smooth value < outline thickess)
smooth_value += aZone->GetMinThickness() / 2;
// smooth_value cannot be bigger than the half size oh the hole:
smooth_value = std::min( smooth_value, aZone->GetHatchGap() / 2 );
// the error to approximate a circle by segments when smoothing corners by a arc
maxError = std::max( maxError * 2, smooth_value / 20 );
switch( smooth_level )
{
case 1:
// Chamfer() uses the distance from a corner to create a end point
// for the chamfer.
hole_base = smooth_hole.Chamfer( smooth_value ).Outline( 0 );
break;
default:
if( aZone->GetHatchSmoothingLevel() > 2 )
maxError /= 2; // Force better smoothing
hole_base = smooth_hole.Fillet( smooth_value, maxError ).Outline( 0 );
break;
case 0:
break;
};
}
}
// Build holes
SHAPE_POLY_SET holes;
for( int xx = 0; ; xx++ )
{
int xpos = xx * gridsize;
if( xpos > bbox.GetWidth() )
break;
for( int yy = 0; ; yy++ )
{
int ypos = yy * gridsize;
if( ypos > bbox.GetHeight() )
break;
// Generate hole
SHAPE_LINE_CHAIN hole( hole_base );
hole.Move( VECTOR2I( xpos, ypos ) );
holes.AddOutline( hole );
}
}
holes.Move( bbox.GetPosition() );
if( !aZone->GetHatchOrientation().IsZero() )
holes.Rotate( aZone->GetHatchOrientation() );
DUMP_POLYS_TO_COPPER_LAYER( holes, In10_Cu, wxT( "hatch-holes" ) );
int outline_margin = aZone->GetMinThickness() * 1.1;
// Using GetHatchThickness() can look more consistent than GetMinThickness().
if( aZone->GetHatchBorderAlgorithm() && aZone->GetHatchThickness() > outline_margin )
outline_margin = aZone->GetHatchThickness();
// The fill has already been deflated to ensure GetMinThickness() so we just have to
// account for anything beyond that.
SHAPE_POLY_SET deflatedFilledPolys = aFillPolys.CloneDropTriangulation();
deflatedFilledPolys.Deflate( outline_margin - aZone->GetMinThickness(),
CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
holes.BooleanIntersection( deflatedFilledPolys, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( holes, In11_Cu, wxT( "fill-clipped-hatch-holes" ) );
SHAPE_POLY_SET deflatedOutline = aZone->Outline()->CloneDropTriangulation();
deflatedOutline.Deflate( outline_margin, CORNER_STRATEGY::CHAMFER_ALL_CORNERS, maxError );
holes.BooleanIntersection( deflatedOutline, SHAPE_POLY_SET::PM_FAST );
DUMP_POLYS_TO_COPPER_LAYER( holes, In12_Cu, wxT( "outline-clipped-hatch-holes" ) );
if( aZone->GetNetCode() != 0 )
{
// Vias and pads connected to the zone must not be allowed to become isolated inside
// one of the holes. Effectively this means their copper outline needs to be expanded
// to be at least as wide as the gap so that it is guaranteed to touch at least one
// edge.
BOX2I zone_boundingbox = aZone->GetBoundingBox();
SHAPE_POLY_SET aprons;
int min_apron_radius = ( aZone->GetHatchGap() * 10 ) / 19;
for( PCB_TRACK* track : m_board->Tracks() )
{
if( track->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( track );
if( via->GetNetCode() == aZone->GetNetCode()
&& via->IsOnLayer( aLayer )
&& via->GetBoundingBox().Intersects( zone_boundingbox ) )
{
int r = std::max( min_apron_radius,
via->GetDrillValue() / 2 + outline_margin );
TransformCircleToPolygon( aprons, via->GetPosition(), r, maxError,
ERROR_OUTSIDE );
}
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
{
if( pad->GetNetCode() == aZone->GetNetCode()
&& pad->IsOnLayer( aLayer )
&& pad->GetBoundingBox().Intersects( zone_boundingbox ) )
{
// What we want is to bulk up the pad shape so that the narrowest bit of
// copper between the hole and the apron edge is at least outline_margin
// wide (and that the apron itself meets min_apron_radius. But that would
// take a lot of code and math, and the following approximation is close
// enough.
int pad_width = std::min( pad->GetSize( aLayer ).x, pad->GetSize( aLayer ).y );
int slot_width = std::min( pad->GetDrillSize().x, pad->GetDrillSize().y );
int min_annular_ring_width = ( pad_width - slot_width ) / 2;
int clearance = std::max( min_apron_radius - pad_width / 2,
outline_margin - min_annular_ring_width );
clearance = std::max( 0, clearance - linethickness / 2 );
pad->TransformShapeToPolygon( aprons, aLayer, clearance, maxError,
ERROR_OUTSIDE );
}
}
}
holes.BooleanSubtract( aprons, SHAPE_POLY_SET::PM_FAST );
}
DUMP_POLYS_TO_COPPER_LAYER( holes, In13_Cu, wxT( "pad-via-clipped-hatch-holes" ) );
// Now filter truncated holes to avoid small holes in pattern
// It happens for holes near the zone outline
for( int ii = 0; ii < holes.OutlineCount(); )
{
double area = holes.Outline( ii ).Area();
if( area < minimal_hole_area ) // The current hole is too small: remove it
holes.DeletePolygon( ii );
else
++ii;
}
// create grid. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
// generate strictly simple polygons needed by Gerber files and Fracture()
aFillPolys.BooleanSubtract( aFillPolys, holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
DUMP_POLYS_TO_COPPER_LAYER( aFillPolys, In14_Cu, wxT( "after-hatching" ) );
return true;
}