mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2024-11-22 05:25:02 +00:00
5e0abadb23
F_Cu = 0 B_Cu = 2 Remaining internal copper layers are even and incrementing Non-copper layers are odd and incrementing. This means that we can no longer do things like: for( PCB_LAYER_ID layer = F_Cu; layer <= B_Cu; ++layer) Instead, we have the class LAYER_RANGE: for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu) ) Similarly, gt/lt tests should not refer to the integer value of the layer. We have functions such as IsCopperLayer to test whether a layer is copper or not. When using the connectivity RTree, the third dimension is layer, so we provide B_Cu with the special INT_MAX value, ensuring that elements between F_Cu and B_Cu will be identified. There is a new, special function GetBoardLayer() for interfacing with CN_ITEMS Similarly, PNS layers remain unchanged and sequential. A set of interface functions is provided to map PNS layers to Board layers and back. This allows the PNS_LAYER_RANGE to function as expected
214 lines
6.3 KiB
C++
214 lines
6.3 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2024 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#define BOOST_TEST_NO_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <lset.h>
|
|
#include <lseq.h>
|
|
|
|
// Macros for easier test specification
|
|
#define PCB_LAYER_COUNT PCB_LAYER_ID_COUNT
|
|
|
|
BOOST_AUTO_TEST_SUITE(LSETTests)
|
|
|
|
// Initialize an empty LSET
|
|
BOOST_AUTO_TEST_CASE(LSETConstructorEmpty)
|
|
{
|
|
LSET set;
|
|
BOOST_CHECK_EQUAL(set.count(), 0);
|
|
}
|
|
|
|
// Initialize LSET from another BASE_SET
|
|
BOOST_AUTO_TEST_CASE(LSETConstructorFromBaseSet)
|
|
{
|
|
BASE_SET base( PCB_LAYER_ID_COUNT );
|
|
base.set(F_Cu);
|
|
base.set(In1_Cu);
|
|
|
|
LSET set(base);
|
|
BOOST_CHECK_EQUAL(set.count(), 2);
|
|
BOOST_CHECK(set.test(F_Cu));
|
|
BOOST_CHECK(set.test(In1_Cu));
|
|
}
|
|
|
|
// Initialize LSET from a specific PCB_LAYER_ID
|
|
BOOST_AUTO_TEST_CASE(LSETConstructorFromLayer)
|
|
{
|
|
LSET set( { F_Cu } );
|
|
BOOST_CHECK_EQUAL(set.count(), 1);
|
|
BOOST_CHECK(set.test(F_Cu));
|
|
}
|
|
|
|
// Initialize LSET from an initializer list
|
|
BOOST_AUTO_TEST_CASE(LSETConstructorFromList)
|
|
{
|
|
LSET set({F_Cu, In1_Cu, In2_Cu});
|
|
BOOST_CHECK_EQUAL(set.count(), 3);
|
|
BOOST_CHECK(set.test(F_Cu));
|
|
BOOST_CHECK(set.test(In1_Cu));
|
|
BOOST_CHECK(set.test(In2_Cu));
|
|
}
|
|
|
|
// Initialize LSET from LSEQ
|
|
BOOST_AUTO_TEST_CASE(LSETConstructorFromSequence)
|
|
{
|
|
LSEQ seq = {F_Cu, In1_Cu, In2_Cu};
|
|
LSET set(seq);
|
|
BOOST_CHECK_EQUAL(set.count(), 3);
|
|
BOOST_CHECK(set.test(F_Cu));
|
|
BOOST_CHECK(set.test(In1_Cu));
|
|
BOOST_CHECK(set.test(In2_Cu));
|
|
}
|
|
|
|
// Test Containment Check
|
|
BOOST_AUTO_TEST_CASE(LSETContains)
|
|
{
|
|
LSET set({F_Cu, In1_Cu, In2_Cu});
|
|
BOOST_CHECK(set.Contains(F_Cu));
|
|
BOOST_CHECK(set.Contains(In1_Cu));
|
|
BOOST_CHECK(!set.Contains(In30_Cu));
|
|
}
|
|
|
|
// Test Sequence Generation
|
|
BOOST_AUTO_TEST_CASE(LSETSequenceGeneration)
|
|
{
|
|
LSET set({F_Cu, In1_Cu, In2_Cu});
|
|
|
|
LSEQ sequence = set.Seq();
|
|
BOOST_CHECK_EQUAL(sequence.size(), 3);
|
|
BOOST_CHECK_EQUAL(sequence[0], F_Cu);
|
|
BOOST_CHECK_EQUAL(sequence[1], In1_Cu);
|
|
BOOST_CHECK_EQUAL(sequence[2], In2_Cu);
|
|
}
|
|
|
|
// Test Hex and Binary Formatting
|
|
BOOST_AUTO_TEST_CASE(LSETFormatting)
|
|
{
|
|
LSET set({F_Cu, In1_Cu, In2_Cu});
|
|
|
|
std::string hexString = set.FmtHex();
|
|
std::string expectedHexString = "00000000_00000051"; // depends on bit ordering
|
|
|
|
BOOST_CHECK_EQUAL(hexString, expectedHexString);
|
|
|
|
std::string binString = set.FmtBin();
|
|
std::string expectedBinString = "0000_0000|0000_0000|0000_0000|0000_0000|0000_0000|0000_0000|0000_0000|0101_0001"; // depends on bit ordering
|
|
}
|
|
// Test ExtractLayer and Flip
|
|
BOOST_AUTO_TEST_CASE(LSETManipulations)
|
|
{
|
|
LSET set({F_Cu, In1_Cu, In2_Cu});
|
|
|
|
// Test ExtractLayer: should extract the layer set or undefined if more than one
|
|
PCB_LAYER_ID extractedLayer = set.ExtractLayer();
|
|
BOOST_CHECK_EQUAL(extractedLayer, UNDEFINED_LAYER);
|
|
|
|
// Test Flip: should swap front and back layers
|
|
set.Flip( 4 );
|
|
BOOST_CHECK(set.Contains(B_Cu));
|
|
BOOST_CHECK(set.Contains(In1_Cu)); // Internal layers remain unchanged
|
|
|
|
// Test setting a single layer
|
|
set = {F_Cu};
|
|
extractedLayer = set.ExtractLayer();
|
|
BOOST_CHECK_EQUAL(extractedLayer, F_Cu);
|
|
set.Flip();
|
|
extractedLayer = set.ExtractLayer();
|
|
BOOST_CHECK_EQUAL(extractedLayer, B_Cu);
|
|
}
|
|
|
|
// Test Static Mask Methods
|
|
BOOST_AUTO_TEST_CASE(LSETStaticMasks)
|
|
{
|
|
LSET internalCuMask = LSET::InternalCuMask();
|
|
BOOST_CHECK(internalCuMask.Contains(PCB_LAYER_ID::In1_Cu));
|
|
BOOST_CHECK(internalCuMask.Contains(PCB_LAYER_ID::In30_Cu));
|
|
BOOST_CHECK(!internalCuMask.Contains(PCB_LAYER_ID::F_Cu));
|
|
BOOST_CHECK(!internalCuMask.Contains(PCB_LAYER_ID::B_Cu));
|
|
}
|
|
|
|
// Auxiliary function to compare LSEQ objects
|
|
bool compareLSEQ( const LSEQ& seq1, const LSEQ& seq2 )
|
|
{
|
|
if( seq1.size() != seq2.size() )
|
|
return false;
|
|
for( size_t i = 0; i < seq1.size(); ++i )
|
|
{
|
|
if( seq1[i] != seq2[i] )
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Test LSET::Seq base case
|
|
BOOST_AUTO_TEST_CASE( LSETSeqBaseCase )
|
|
{
|
|
LSET lset( { F_Cu, B_Cu, In1_Cu, In2_Cu } );
|
|
LSEQ expected = { F_Cu, B_Cu, In1_Cu, In2_Cu };
|
|
|
|
LSEQ result = lset.Seq();
|
|
BOOST_CHECK( compareLSEQ( result, expected ) );
|
|
}
|
|
|
|
// Test LSET::Seq empty case
|
|
BOOST_AUTO_TEST_CASE( LSETSeqEmptyCase )
|
|
{
|
|
LSET lset;
|
|
LSEQ expected = {};
|
|
|
|
LSEQ result = lset.Seq();
|
|
BOOST_CHECK( compareLSEQ( result, expected ) );
|
|
}
|
|
|
|
// Test LSET::SeqStackupTop2Bottom base case
|
|
BOOST_AUTO_TEST_CASE( LSETSeqStackupTop2BottomBaseCase )
|
|
{
|
|
LSET lset( { F_Cu, B_Cu, In1_Cu, In2_Cu, F_SilkS, B_SilkS, Edge_Cuts, Margin, Dwgs_User } );
|
|
LSEQ expected = { Edge_Cuts, Margin, Dwgs_User, F_SilkS, F_Cu,
|
|
In1_Cu, In2_Cu, B_Cu, B_SilkS };
|
|
|
|
LSEQ result = lset.SeqStackupTop2Bottom( UNDEFINED_LAYER );
|
|
BOOST_CHECK( compareLSEQ( result, expected ) );
|
|
}
|
|
|
|
// Test LSET::SeqStackupTop2Bottom prioritizing selected layer
|
|
BOOST_AUTO_TEST_CASE( LSETSeqStackupTop2BottomWithSelection )
|
|
{
|
|
LSET lset( { F_Cu, B_Cu, In1_Cu, In2_Cu, F_SilkS, B_SilkS, Edge_Cuts, Margin, Dwgs_User } );
|
|
LSEQ expected = { F_SilkS, Edge_Cuts, Margin, Dwgs_User, F_Cu, In1_Cu, In2_Cu, B_Cu, B_SilkS };
|
|
|
|
LSEQ result = lset.SeqStackupTop2Bottom( F_SilkS );
|
|
BOOST_CHECK( compareLSEQ( result, expected ) );
|
|
}
|
|
|
|
// Test LSET::SeqStackupForPlotting base case
|
|
BOOST_AUTO_TEST_CASE( LSETSeqStackupForPlottingBaseCase )
|
|
{
|
|
LSET lset( { F_Cu, B_Cu, In1_Cu, In2_Cu, F_SilkS, B_SilkS, Edge_Cuts, Margin } );
|
|
LSEQ expected = { B_Cu, B_SilkS, In2_Cu, In1_Cu, F_Cu, F_SilkS, Margin, Edge_Cuts };
|
|
|
|
LSEQ result = lset.SeqStackupForPlotting();
|
|
BOOST_CHECK( compareLSEQ( result, expected ) );
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|