7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2024-11-25 19:50:24 +00:00
kicad/qa/tests/libs/kimath/geometry/test_oval.cpp
John Beard 1d2fb3ec82 Geom: add a simple OVAL type
Makes it easier to reason about oval shapes in geometric terms.

For now, this isn't a SHAPE, but it could be (and it's a
fairly common primitive, so it could be useful, though the
obvious use (clearance) is equivalent to a SEG with a clearance,
which is already a function that exists.
2024-09-19 06:35:43 +01:00

182 lines
5.6 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2023 KiCad Developers, see AUTHORS.TXT for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <qa_utils/wx_utils/unit_test_utils.h>
#include <geometry/oval.h>
#include "geom_test_utils.h"
/**
* @brief Check that two collections contain the same elements, ignoring order.
*
* I.e. expected contains everything in actual and vice versa.
*
* The collections lengths are also checked to weed out unexpected duplicates.
*
* @param expected a collection of expected elements
* @param actual a collection of actual elements
*/
template <typename T>
void CHECK_COLLECTIONS_SAME_UNORDERED(const T& expected, const T& actual) {
for( const auto& p : expected )
{
BOOST_CHECK_MESSAGE( std::find( actual.begin(), actual.end(), p ) != actual.end(),
"Expected item not found: " << p );
}
for( const auto& p : actual )
{
BOOST_CHECK_MESSAGE( std::find( expected.begin(), expected.end(), p ) != expected.end(),
"Unexpected item: " << p );
}
BOOST_CHECK_EQUAL( expected.size(), actual.size() );
}
BOOST_AUTO_TEST_SUITE( Oval )
struct OVAL_POINTS_TEST_CASE
{
OVAL m_oval;
std::vector<TYPED_POINT2I> m_expected_points;
};
void DoOvalPointTestChecks( const OVAL_POINTS_TEST_CASE& testcase )
{
const auto sort_vectors_x_then_y = []( const VECTOR2I& a, const VECTOR2I& b ) {
return LexicographicalCompare<VECTOR2I::coord_type>( a, b ) > 0;
};
std::vector<TYPED_POINT2I> expected_points = testcase.m_expected_points;
std::vector<TYPED_POINT2I> actual_points =
KIGEOM::GetOvalKeyPoints( testcase.m_oval, KIGEOM::OVAL_ALL_KEY_POINTS );
CHECK_COLLECTIONS_SAME_UNORDERED( expected_points, actual_points );
}
BOOST_AUTO_TEST_CASE( SimpleOvalVertical )
{
const OVAL_POINTS_TEST_CASE testcase
{
{
SEG{ { 0, -1000 }, { 0, 1000 } },
1000,
},
{
{ { 0, 0 }, PT_CENTER },
// Main points
{ { 0, 1500 }, PT_QUADRANT },
{ { 0, -1500 }, PT_QUADRANT },
{ { 500, 0 }, PT_MID },
{ { -500, 0 }, PT_MID },
// Cap centres
{ { 0, 1000 }, PT_CENTER },
{ { 0, -1000 }, PT_CENTER },
// Side segment ends
{ { 500, 1000 }, PT_END },
{ { 500, -1000 }, PT_END },
{ { -500, 1000 }, PT_END },
{ { -500, -1000 }, PT_END },
// No quadrants
},
};
DoOvalPointTestChecks( testcase );
}
BOOST_AUTO_TEST_CASE( SimpleOvalHorizontal )
{
const OVAL_POINTS_TEST_CASE testcase
{
{
SEG{ { -1000, 0 }, { 1000, 0 } },
1000,
},
{
{ { 0, 0 }, PT_CENTER },
// Main points
{ { 0, 500 }, PT_MID },
{ { 0, -500 }, PT_MID },
{ { 1500, 0 }, PT_QUADRANT },
{ { -1500, 0 }, PT_QUADRANT },
// Cap centres
{ { 1000, 0 }, PT_CENTER },
{ { -1000, 0 }, PT_CENTER },
// Side segment ends
{ { 1000, 500 }, PT_END },
{ { 1000, -500 }, PT_END },
{ { -1000, 500 }, PT_END },
{ { -1000, -500 }, PT_END },
// No quadrants
},
};
DoOvalPointTestChecks( testcase );
}
BOOST_AUTO_TEST_CASE( SimpleOval45Degrees )
{
// In this case, it's useful to keep in mind the hypotenuse of
// isoceles right-angled triangles is sqrt(2) times the length of the sides
// 500 / sqrt(2) = 354
// 1000 / sqrt(2) = 707
// 1500 / sqrt(2) = 1061
// 2000 / sqrt(2) = 1414
const OVAL_POINTS_TEST_CASE testcase
{
{
SEG{ GetRotated( { -1500, 0 }, ANGLE_45 ), GetRotated( { 1500, 0 }, ANGLE_45 ) },
1000,
},
{
{ { 0, 0 }, PT_CENTER },
// Main points
{ { 1414, -1414 }, PT_END },
{ { -1414, 1414 }, PT_END },
{ { 354, 354 }, PT_MID },
{ { -354, -354 }, PT_MID },
// Side segment ends
{ { -1414, 707 }, PT_END },
{ { 1414, -707 }, PT_END },
{ { -707, 1414 }, PT_END },
{ { 707, -1414 }, PT_END },
// Cap centres
{ { 1061, -1061 }, PT_CENTER },
{ { -1061, 1061 }, PT_CENTER },
// Extremum points (always one of NSEW of a cap centre because 45 degrees)
{ { -1061 - 500, 1061 }, PT_QUADRANT },
{ { -1061, 1061 + 500 }, PT_QUADRANT },
{ { 1061 + 500, -1061 }, PT_QUADRANT },
{ { 1061, -1061 - 500 }, PT_QUADRANT },
},
};
DoOvalPointTestChecks( testcase );
}
BOOST_AUTO_TEST_SUITE_END()