mirror of
https://gitlab.com/kicad/code/kicad.git
synced 2025-01-08 20:04:45 +00:00
247 lines
7.3 KiB
C++
247 lines
7.3 KiB
C++
// Copyright 2014 The Crashpad Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "snapshot/cpu_context.h"
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
|
|
#include <iterator>
|
|
|
|
#include "base/notreached.h"
|
|
#include "cpu_architecture.h"
|
|
#include "util/misc/arraysize.h"
|
|
#include "util/misc/implicit_cast.h"
|
|
|
|
namespace crashpad {
|
|
|
|
namespace {
|
|
|
|
// Sanity-check complex structures to ensure interoperability.
|
|
static_assert(sizeof(CPUContextX86::Fsave) == 108, "CPUContextX86::Fsave size");
|
|
static_assert(sizeof(CPUContextX86::Fxsave) == 512,
|
|
"CPUContextX86::Fxsave size");
|
|
static_assert(sizeof(CPUContextX86_64::Fxsave) == 512,
|
|
"CPUContextX86_64::Fxsave size");
|
|
|
|
enum {
|
|
kX87TagValid = 0,
|
|
kX87TagZero,
|
|
kX87TagSpecial,
|
|
kX87TagEmpty,
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// static
|
|
void CPUContextX86::FxsaveToFsave(const Fxsave& fxsave, Fsave* fsave) {
|
|
fsave->fcw = fxsave.fcw;
|
|
fsave->reserved_1 = 0;
|
|
fsave->fsw = fxsave.fsw;
|
|
fsave->reserved_2 = 0;
|
|
fsave->ftw = FxsaveToFsaveTagWord(fxsave.fsw, fxsave.ftw, fxsave.st_mm);
|
|
fsave->reserved_3 = 0;
|
|
fsave->fpu_ip = fxsave.fpu_ip;
|
|
fsave->fpu_cs = fxsave.fpu_cs;
|
|
fsave->fop = fxsave.fop;
|
|
fsave->fpu_dp = fxsave.fpu_dp;
|
|
fsave->fpu_ds = fxsave.fpu_ds;
|
|
fsave->reserved_4 = 0;
|
|
static_assert(ArraySize(fsave->st) == ArraySize(fxsave.st_mm),
|
|
"FPU stack registers must be equivalent");
|
|
for (size_t index = 0; index < std::size(fsave->st); ++index) {
|
|
memcpy(fsave->st[index], fxsave.st_mm[index].st, sizeof(fsave->st[index]));
|
|
}
|
|
}
|
|
|
|
// static
|
|
void CPUContextX86::FsaveToFxsave(const Fsave& fsave, Fxsave* fxsave) {
|
|
fxsave->fcw = fsave.fcw;
|
|
fxsave->fsw = fsave.fsw;
|
|
fxsave->ftw = FsaveToFxsaveTagWord(fsave.ftw);
|
|
fxsave->reserved_1 = 0;
|
|
fxsave->fop = fsave.fop;
|
|
fxsave->fpu_ip = fsave.fpu_ip;
|
|
fxsave->fpu_cs = fsave.fpu_cs;
|
|
fxsave->reserved_2 = 0;
|
|
fxsave->fpu_dp = fsave.fpu_dp;
|
|
fxsave->fpu_ds = fsave.fpu_ds;
|
|
fxsave->reserved_3 = 0;
|
|
fxsave->mxcsr = 0;
|
|
fxsave->mxcsr_mask = 0;
|
|
static_assert(ArraySize(fxsave->st_mm) == ArraySize(fsave.st),
|
|
"FPU stack registers must be equivalent");
|
|
for (size_t index = 0; index < std::size(fsave.st); ++index) {
|
|
memcpy(fxsave->st_mm[index].st, fsave.st[index], sizeof(fsave.st[index]));
|
|
memset(fxsave->st_mm[index].st_reserved,
|
|
0,
|
|
sizeof(fxsave->st_mm[index].st_reserved));
|
|
}
|
|
memset(fxsave->xmm, 0, sizeof(*fxsave) - offsetof(Fxsave, xmm));
|
|
}
|
|
|
|
// static
|
|
uint16_t CPUContextX86::FxsaveToFsaveTagWord(
|
|
uint16_t fsw,
|
|
uint8_t fxsave_tag,
|
|
const CPUContextX86::X87OrMMXRegister st_mm[8]) {
|
|
// The x87 tag word (in both abridged and full form) identifies physical
|
|
// registers, but |st_mm| is arranged in logical stack order. In order to map
|
|
// physical tag word bits to the logical stack registers they correspond to,
|
|
// the “stack top” value from the x87 status word is necessary.
|
|
int stack_top = (fsw >> 11) & 0x7;
|
|
|
|
uint16_t fsave_tag = 0;
|
|
for (int physical_index = 0; physical_index < 8; ++physical_index) {
|
|
bool fxsave_bit = (fxsave_tag & (1 << physical_index)) != 0;
|
|
uint8_t fsave_bits;
|
|
|
|
if (fxsave_bit) {
|
|
int st_index = (physical_index + 8 - stack_top) % 8;
|
|
const CPUContextX86::X87Register& st = st_mm[st_index].st;
|
|
|
|
uint32_t exponent = ((st[9] & 0x7f) << 8) | st[8];
|
|
if (exponent == 0x7fff) {
|
|
// Infinity, NaN, pseudo-infinity, or pseudo-NaN. If it was important to
|
|
// distinguish between these, the J bit and the M bit (the most
|
|
// significant bit of |fraction|) could be consulted.
|
|
fsave_bits = kX87TagSpecial;
|
|
} else {
|
|
// The integer bit the “J bit”.
|
|
bool integer_bit = (st[7] & 0x80) != 0;
|
|
if (exponent == 0) {
|
|
uint64_t fraction = ((implicit_cast<uint64_t>(st[7]) & 0x7f) << 56) |
|
|
(implicit_cast<uint64_t>(st[6]) << 48) |
|
|
(implicit_cast<uint64_t>(st[5]) << 40) |
|
|
(implicit_cast<uint64_t>(st[4]) << 32) |
|
|
(implicit_cast<uint32_t>(st[3]) << 24) |
|
|
(st[2] << 16) | (st[1] << 8) | st[0];
|
|
if (!integer_bit && fraction == 0) {
|
|
fsave_bits = kX87TagZero;
|
|
} else {
|
|
// Denormal (if the J bit is clear) or pseudo-denormal.
|
|
fsave_bits = kX87TagSpecial;
|
|
}
|
|
} else if (integer_bit) {
|
|
fsave_bits = kX87TagValid;
|
|
} else {
|
|
// Unnormal.
|
|
fsave_bits = kX87TagSpecial;
|
|
}
|
|
}
|
|
} else {
|
|
fsave_bits = kX87TagEmpty;
|
|
}
|
|
|
|
fsave_tag |= (fsave_bits << (physical_index * 2));
|
|
}
|
|
|
|
return fsave_tag;
|
|
}
|
|
|
|
// static
|
|
uint8_t CPUContextX86::FsaveToFxsaveTagWord(uint16_t fsave_tag) {
|
|
uint8_t fxsave_tag = 0;
|
|
for (int physical_index = 0; physical_index < 8; ++physical_index) {
|
|
const uint8_t fsave_bits = (fsave_tag >> (physical_index * 2)) & 0x3;
|
|
const bool fxsave_bit = fsave_bits != kX87TagEmpty;
|
|
fxsave_tag |= fxsave_bit << physical_index;
|
|
}
|
|
return fxsave_tag;
|
|
}
|
|
|
|
uint64_t CPUContext::InstructionPointer() const {
|
|
switch (architecture) {
|
|
case kCPUArchitectureX86:
|
|
return x86->eip;
|
|
case kCPUArchitectureX86_64:
|
|
return x86_64->rip;
|
|
case kCPUArchitectureARM:
|
|
return arm->pc;
|
|
case kCPUArchitectureARM64:
|
|
return arm64->pc;
|
|
case kCPUArchitectureRISCV64:
|
|
return riscv64->pc;
|
|
default:
|
|
NOTREACHED();
|
|
return ~0ull;
|
|
}
|
|
}
|
|
|
|
uint64_t CPUContext::StackPointer() const {
|
|
switch (architecture) {
|
|
case kCPUArchitectureX86:
|
|
return x86->esp;
|
|
case kCPUArchitectureX86_64:
|
|
return x86_64->rsp;
|
|
case kCPUArchitectureARM:
|
|
return arm->sp;
|
|
case kCPUArchitectureARM64:
|
|
return arm64->sp;
|
|
case kCPUArchitectureRISCV64:
|
|
return riscv64->regs[1];
|
|
default:
|
|
NOTREACHED();
|
|
return ~0ull;
|
|
}
|
|
}
|
|
|
|
uint64_t CPUContext::ShadowStackPointer() const {
|
|
switch (architecture) {
|
|
case kCPUArchitectureX86:
|
|
case kCPUArchitectureARM:
|
|
case kCPUArchitectureARM64:
|
|
NOTREACHED();
|
|
return 0;
|
|
case kCPUArchitectureX86_64:
|
|
return x86_64->xstate.cet_u.ssp;
|
|
default:
|
|
NOTREACHED();
|
|
return ~0ull;
|
|
}
|
|
}
|
|
|
|
bool CPUContext::HasShadowStack() const {
|
|
switch (architecture) {
|
|
case kCPUArchitectureX86:
|
|
case kCPUArchitectureARM:
|
|
case kCPUArchitectureARM64:
|
|
return false;
|
|
case kCPUArchitectureX86_64:
|
|
return x86_64->xstate.cet_u.cetmsr != 0;
|
|
default:
|
|
NOTREACHED();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool CPUContext::Is64Bit() const {
|
|
switch (architecture) {
|
|
case kCPUArchitectureX86_64:
|
|
case kCPUArchitectureARM64:
|
|
case kCPUArchitectureMIPS64EL:
|
|
case kCPUArchitectureRISCV64:
|
|
return true;
|
|
case kCPUArchitectureX86:
|
|
case kCPUArchitectureARM:
|
|
case kCPUArchitectureMIPSEL:
|
|
return false;
|
|
default:
|
|
NOTREACHED();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
} // namespace crashpad
|