7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2025-01-08 03:04:43 +00:00
kicad/thirdparty/sentry-native/external/libunwindstack-ndk/GlobalDebugImpl.h
2023-12-17 21:39:10 -05:00

438 lines
16 KiB
C++

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
#include <memory>
#include <vector>
#include <unwindstack/Global.h>
#include <unwindstack/Maps.h>
#include "Check.h"
#include "GlobalDebugInterface.h"
#include "MemoryCache.h"
#include "MemoryRange.h"
// This implements the JIT Compilation Interface.
// See https://sourceware.org/gdb/onlinedocs/gdb/JIT-Interface.html
//
// We use it to get in-memory ELF files created by the ART compiler,
// but we also use it to get list of DEX files used by the runtime.
namespace unwindstack {
// Implementation templated for ELF/DEX and for different architectures.
template <typename Symfile, typename Uintptr_T, typename Uint64_T>
class GlobalDebugImpl : public GlobalDebugInterface<Symfile>, public Global {
public:
static constexpr int kMaxRaceRetries = 16;
static constexpr int kMaxHeadRetries = 16;
static constexpr uint8_t kMagic[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '2'};
struct JITCodeEntry {
Uintptr_T next;
Uintptr_T prev;
Uintptr_T symfile_addr;
Uint64_T symfile_size;
// Android-specific fields:
Uint64_T timestamp;
uint32_t seqlock;
};
static constexpr size_t kSizeOfCodeEntryV1 = offsetof(JITCodeEntry, timestamp);
static constexpr size_t kSizeOfCodeEntryV2 = sizeof(JITCodeEntry);
struct JITDescriptor {
uint32_t version;
uint32_t action_flag;
Uintptr_T relevant_entry;
Uintptr_T first_entry;
// Android-specific fields:
uint8_t magic[8];
uint32_t flags;
uint32_t sizeof_descriptor;
uint32_t sizeof_entry;
uint32_t seqlock;
Uint64_T timestamp;
};
static constexpr size_t kSizeOfDescriptorV1 = offsetof(JITDescriptor, magic);
static constexpr size_t kSizeOfDescriptorV2 = sizeof(JITDescriptor);
// This uniquely identifies entry in presence of concurrent modifications.
// Each (address,seqlock) pair is unique for each newly created JIT entry.
struct UID {
uint64_t address; // Address of JITCodeEntry in memory.
uint32_t seqlock; // This servers as "version" for the given address.
bool operator<(const UID& other) const {
return std::tie(address, seqlock) < std::tie(other.address, other.seqlock);
}
};
GlobalDebugImpl(ArchEnum arch, std::shared_ptr<Memory>& memory,
std::vector<std::string>& search_libs, const char* global_variable_name)
: Global(memory, search_libs), global_variable_name_(global_variable_name) {
SetArch(arch);
}
bool ReadDescriptor(uint64_t addr) {
JITDescriptor desc{};
// Try to read the full descriptor including Android-specific fields.
if (!this->memory_->ReadFully(addr, &desc, kSizeOfDescriptorV2)) {
// Fallback to just the minimal descriptor.
// This will make the magic check below fail.
if (!this->memory_->ReadFully(addr, &desc, kSizeOfDescriptorV1)) {
return false;
}
}
if (desc.version != 1 || desc.first_entry == 0) {
// Either unknown version, or no jit entries.
return false;
}
// Check if there are extra Android-specific fields.
if (memcmp(desc.magic, kMagic, sizeof(kMagic)) == 0) {
jit_entry_size_ = kSizeOfCodeEntryV2;
seqlock_offset_ = offsetof(JITCodeEntry, seqlock);
} else {
jit_entry_size_ = kSizeOfCodeEntryV1;
seqlock_offset_ = 0;
}
descriptor_addr_ = addr;
return true;
}
void ProcessArch() {}
bool ReadVariableData(uint64_t ptr) { return ReadDescriptor(ptr); }
// Invoke callback for all symfiles that contain the given PC.
// Returns true if any callback returns true (which also aborts the iteration).
template <typename Callback /* (Symfile*) -> bool */>
bool ForEachSymfile(Maps* maps, uint64_t pc, Callback callback) {
// Use a single lock, this object should be used so infrequently that
// a fine grain lock is unnecessary.
std::lock_guard<std::mutex> guard(lock_);
if (descriptor_addr_ == 0) {
FindAndReadVariable(maps, global_variable_name_);
if (descriptor_addr_ == 0) {
return false;
}
}
// Try to find the entry in already loaded symbol files.
for (auto& it : entries_) {
Symfile* symfile = it.second.get();
// Check seqlock to make sure that entry is still valid (it may be very old).
if (symfile->IsValidPc(pc) && CheckSeqlock(it.first) && callback(symfile)) {
return true;
}
}
// Update all entries and retry.
ReadAllEntries(maps);
for (auto& it : entries_) {
Symfile* symfile = it.second.get();
// Note that the entry could become invalid since the ReadAllEntries above,
// but that is ok. We don't want to fail or refresh the entries yet again.
// This is as if we found the entry in time and it became invalid after return.
// This is relevant when ART moves/packs JIT entries. That is, the entry is
// technically deleted, but only because it was copied into merged uber-entry.
// So the JIT method is still alive and the deleted data is still correct.
if (symfile->IsValidPc(pc) && callback(symfile)) {
return true;
}
}
return false;
}
bool GetFunctionName(Maps* maps, uint64_t pc, SharedString* name, uint64_t* offset) {
// NB: If symfiles overlap in PC ranges, this will check all of them.
return ForEachSymfile(maps, pc, [pc, name, offset](Symfile* file) {
return file->GetFunctionName(pc, name, offset);
});
}
Symfile* Find(Maps* maps, uint64_t pc) {
// NB: If symfiles overlap in PC ranges (which can happen for both ELF and DEX),
// this will check all of them and return one that also has a matching function.
Symfile* result = nullptr;
bool found = ForEachSymfile(maps, pc, [pc, &result](Symfile* file) {
result = file;
SharedString name;
uint64_t offset;
return file->GetFunctionName(pc, &name, &offset);
});
if (found) {
return result; // Found symfile with symbol that also matches the PC.
}
// There is no matching symbol, so return any symfile for which the PC is valid.
// This is a useful fallback for tests, which often have symfiles with no functions.
return result;
}
// Read all entries from the process and cache them locally.
// The linked list might be concurrently modified. We detect races and retry.
bool ReadAllEntries(Maps* maps) {
for (int i = 0; i < kMaxRaceRetries; i++) {
bool race = false;
if (!ReadAllEntries(maps, &race)) {
if (race) {
continue; // Retry due to concurrent modification of the linked list.
}
return false; // Failed to read entries.
}
return true; // Success.
}
return false; // Too many retries.
}
// Read all JIT entries while assuming there might be concurrent modifications.
// If there is a race, the method will fail and the caller should retry the call.
bool ReadAllEntries(Maps* maps, bool* race) {
// New entries might be added while we iterate over the linked list.
// In particular, an entry could be effectively moved from end to start due to
// the ART repacking algorithm, which groups smaller entries into a big one.
// Therefore keep reading the most recent entries until we reach a fixed point.
std::map<UID, std::shared_ptr<Symfile>> entries;
for (size_t i = 0; i < kMaxHeadRetries; i++) {
size_t old_size = entries.size();
if (!ReadNewEntries(maps, &entries, race)) {
return false;
}
if (entries.size() == old_size) {
entries_.swap(entries);
return true;
}
}
return false; // Too many retries.
}
// Read new JIT entries (head of linked list) until we find one that we have seen before.
// This method uses seqlocks extensively to ensure safety in case of concurrent modifications.
bool ReadNewEntries(Maps* maps, std::map<UID, std::shared_ptr<Symfile>>* entries, bool* race) {
// Read the address of the head entry in the linked list.
UID uid;
if (!ReadNextField(descriptor_addr_ + offsetof(JITDescriptor, first_entry), &uid, race)) {
return false;
}
// Follow the linked list.
while (uid.address != 0) {
// Check if we have reached an already cached entry (we restart from head repeatedly).
if (entries->count(uid) != 0) {
return true;
}
// Read the entry.
JITCodeEntry data{};
if (!memory_->ReadFully(uid.address, &data, jit_entry_size_)) {
return false;
}
data.symfile_addr = StripAddressTag(data.symfile_addr);
// Check the seqlock to verify the symfile_addr and symfile_size.
if (!CheckSeqlock(uid, race)) {
return false;
}
// Copy and load the symfile.
auto it = entries_.find(uid);
if (it != entries_.end()) {
// The symfile was already loaded - just copy the reference.
entries->emplace(uid, it->second);
} else if (data.symfile_addr != 0) {
std::shared_ptr<Symfile> symfile;
bool ok = this->Load(maps, memory_, data.symfile_addr, data.symfile_size.value, symfile);
// Check seqlock first because load can fail due to race (so we want to trigger retry).
// TODO: Extract the memory copy code before the load, so that it is immune to races.
if (!CheckSeqlock(uid, race)) {
return false; // The ELF/DEX data was removed before we loaded it.
}
// Exclude symbol files that fail to load (but continue loading other files).
if (ok) {
entries->emplace(uid, symfile);
}
}
// Go to next entry.
UID next_uid;
if (!ReadNextField(uid.address + offsetof(JITCodeEntry, next), &next_uid, race)) {
return false; // The next pointer was modified while we were reading it.
}
if (!CheckSeqlock(uid, race)) {
return false; // This entry was deleted before we moved to the next one.
}
uid = next_uid;
}
return true;
}
// Read the address and seqlock of entry from the next field of linked list.
// This is non-trivial since they need to be consistent (as if we read both atomically).
//
// We're reading pointers, which can point at heap-allocated structures (the
// case for the __dex_debug_descriptor pointers at the time of writing).
// On 64 bit systems, the target process might have top-byte heap pointer
// tagging enabled, so we need to mask out the tag. We also know that the
// address must point to userspace, so the top byte of the address must be
// zero on both x64 and aarch64 without tagging. Therefore the masking can be
// done unconditionally.
bool ReadNextField(uint64_t next_field_addr, UID* uid, bool* race) {
Uintptr_T address[2]{0, 0};
uint32_t seqlock[2]{0, 0};
// Read all data twice: address[0], seqlock[0], address[1], seqlock[1].
for (int i = 0; i < 2; i++) {
std::atomic_thread_fence(std::memory_order_acquire);
if (!(memory_->ReadFully(next_field_addr, &address[i], sizeof(address[i])))) {
return false;
}
address[i] = StripAddressTag(address[i]);
if (seqlock_offset_ == 0) {
// There is no seqlock field.
*uid = UID{.address = address[0], .seqlock = 0};
return true;
}
if (address[i] != 0) {
std::atomic_thread_fence(std::memory_order_acquire);
if (!memory_->ReadFully(address[i] + seqlock_offset_, &seqlock[i], sizeof(seqlock[i]))) {
return false;
}
}
}
// Check that both reads returned identical values, and that the entry is live.
if (address[0] != address[1] || seqlock[0] != seqlock[1] || (seqlock[0] & 1) == 1) {
*race = true;
return false;
}
// Since address[1] is sandwiched between two seqlock reads, we know that
// at the time of address[1] read, the entry had the given seqlock value.
*uid = UID{.address = address[1], .seqlock = seqlock[1]};
return true;
}
// Check that the given entry has not been deleted (or replaced by new entry at same address).
bool CheckSeqlock(UID uid, bool* race = nullptr) {
if (seqlock_offset_ == 0) {
// There is no seqlock field.
return true;
}
// This is required for memory synchronization if the we are working with local memory.
// For other types of memory (e.g. remote) this is no-op and has no significant effect.
std::atomic_thread_fence(std::memory_order_acquire);
uint32_t seen_seqlock;
if (!memory_->Read32(uid.address + seqlock_offset_, &seen_seqlock)) {
return false;
}
if (seen_seqlock != uid.seqlock) {
if (race != nullptr) {
*race = true;
}
return false;
}
return true;
}
// AArch64 has Address tagging (aka Top Byte Ignore) feature, which is used by
// HWASAN and MTE to store metadata in the address. We need to remove the tag.
Uintptr_T StripAddressTag(Uintptr_T addr) {
if (arch() == ARCH_ARM64) {
// Make the value signed so it will be sign extended if necessary.
return static_cast<Uintptr_T>((static_cast<int64_t>(addr) << 8) >> 8);
}
return addr;
}
private:
const char* global_variable_name_ = nullptr;
uint64_t descriptor_addr_ = 0; // Non-zero if we have found (non-empty) descriptor.
uint32_t jit_entry_size_ = 0;
uint32_t seqlock_offset_ = 0;
std::map<UID, std::shared_ptr<Symfile>> entries_; // Cached loaded entries.
std::mutex lock_;
};
// uint64_t values on x86 are not naturally aligned,
// but uint64_t values on ARM are naturally aligned.
struct Uint64_P {
uint64_t value;
} __attribute__((packed));
struct Uint64_A {
uint64_t value;
} __attribute__((aligned(8)));
template <typename Symfile>
std::unique_ptr<GlobalDebugInterface<Symfile>> CreateGlobalDebugImpl(
ArchEnum arch, std::shared_ptr<Memory>& memory, std::vector<std::string> search_libs,
const char* global_variable_name) {
CHECK(arch != ARCH_UNKNOWN);
// The interface needs to see real-time changes in memory for synchronization with the
// concurrently running ART JIT compiler. Skip caching and read the memory directly.
std::shared_ptr<Memory> jit_memory;
MemoryCacheBase* cached_memory = memory->AsMemoryCacheBase();
if (cached_memory != nullptr) {
jit_memory = cached_memory->UnderlyingMemory();
} else {
jit_memory = memory;
}
switch (arch) {
case ARCH_X86: {
using Impl = GlobalDebugImpl<Symfile, uint32_t, Uint64_P>;
static_assert(offsetof(typename Impl::JITCodeEntry, symfile_size) == 12, "layout");
static_assert(offsetof(typename Impl::JITCodeEntry, seqlock) == 28, "layout");
static_assert(sizeof(typename Impl::JITCodeEntry) == 32, "layout");
static_assert(sizeof(typename Impl::JITDescriptor) == 48, "layout");
return std::make_unique<Impl>(arch, jit_memory, search_libs, global_variable_name);
}
case ARCH_ARM: {
using Impl = GlobalDebugImpl<Symfile, uint32_t, Uint64_A>;
static_assert(offsetof(typename Impl::JITCodeEntry, symfile_size) == 16, "layout");
static_assert(offsetof(typename Impl::JITCodeEntry, seqlock) == 32, "layout");
static_assert(sizeof(typename Impl::JITCodeEntry) == 40, "layout");
static_assert(sizeof(typename Impl::JITDescriptor) == 48, "layout");
return std::make_unique<Impl>(arch, jit_memory, search_libs, global_variable_name);
}
case ARCH_ARM64:
case ARCH_X86_64: {
#ifdef SENTRY_REMOVED
case ARCH_RISCV64: {
#endif // SENTRY_REMOVED
using Impl = GlobalDebugImpl<Symfile, uint64_t, Uint64_A>;
static_assert(offsetof(typename Impl::JITCodeEntry, symfile_size) == 24, "layout");
static_assert(offsetof(typename Impl::JITCodeEntry, seqlock) == 40, "layout");
static_assert(sizeof(typename Impl::JITCodeEntry) == 48, "layout");
static_assert(sizeof(typename Impl::JITDescriptor) == 56, "layout");
return std::make_unique<Impl>(arch, jit_memory, search_libs, global_variable_name);
}
default:
abort();
}
}
} // namespace unwindstack