7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2025-04-07 00:25:22 +00:00
kicad/pcbnew/pcb_track.cpp
2025-03-11 10:08:04 +00:00

2319 lines
66 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2012 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright The KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "pcb_track.h"
#include <pcb_base_frame.h>
#include <core/mirror.h>
#include <connectivity/connectivity_data.h>
#include <board.h>
#include <board_design_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <base_units.h>
#include <layer_range.h>
#include <lset.h>
#include <string_utils.h>
#include <view/view.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <geometry/geometry_utils.h>
#include <geometry/seg.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_arc.h>
#include <drc/drc_engine.h>
#include <pcb_painter.h>
#include <trigo.h>
#include <google/protobuf/any.pb.h>
#include <api/api_enums.h>
#include <api/api_utils.h>
#include <api/api_pcb_utils.h>
#include <api/board/board_types.pb.h>
using KIGFX::PCB_PAINTER;
using KIGFX::PCB_RENDER_SETTINGS;
PCB_TRACK::PCB_TRACK( BOARD_ITEM* aParent, KICAD_T idtype ) :
BOARD_CONNECTED_ITEM( aParent, idtype )
{
m_width = pcbIUScale.mmToIU( 0.2 ); // Gives a reasonable default width
m_hasSolderMask = false;
}
EDA_ITEM* PCB_TRACK::Clone() const
{
return new PCB_TRACK( *this );
}
PCB_ARC::PCB_ARC( BOARD_ITEM* aParent, const SHAPE_ARC* aArc ) :
PCB_TRACK( aParent, PCB_ARC_T )
{
m_Start = aArc->GetP0();
m_End = aArc->GetP1();
m_Mid = aArc->GetArcMid();
}
EDA_ITEM* PCB_ARC::Clone() const
{
return new PCB_ARC( *this );
}
PCB_VIA::PCB_VIA( BOARD_ITEM* aParent ) :
PCB_TRACK( aParent, PCB_VIA_T ),
m_padStack( this )
{
SetViaType( VIATYPE::THROUGH );
Padstack().Drill().start = F_Cu;
Padstack().Drill().end = B_Cu;
SetDrillDefault();
m_padStack.SetUnconnectedLayerMode( PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL );
// Padstack layerset is not used for vias right now
m_padStack.LayerSet().reset();
// For now, vias are always circles
m_padStack.SetShape( PAD_SHAPE::CIRCLE, PADSTACK::ALL_LAYERS );
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) )
m_zoneLayerOverrides[layer] = ZLO_NONE;
m_isFree = false;
}
PCB_VIA::PCB_VIA( const PCB_VIA& aOther ) :
PCB_TRACK( aOther.GetParent(), PCB_VIA_T ),
m_padStack( this )
{
PCB_VIA::operator=( aOther );
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid;
m_zoneLayerOverrides = aOther.m_zoneLayerOverrides;
}
PCB_VIA& PCB_VIA::operator=( const PCB_VIA &aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
m_Start = aOther.m_Start;
m_End = aOther.m_End;
m_viaType = aOther.m_viaType;
m_padStack = aOther.m_padStack;
m_isFree = aOther.m_isFree;
return *this;
}
EDA_ITEM* PCB_VIA::Clone() const
{
return new PCB_VIA( *this );
}
wxString PCB_VIA::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
wxString formatStr;
switch( GetViaType() )
{
case VIATYPE::BLIND_BURIED: formatStr = _( "Blind/Buried Via %s on %s" ); break;
case VIATYPE::MICROVIA: formatStr = _( "Micro Via %s on %s" ); break;
default: formatStr = _( "Via %s on %s" ); break;
}
return wxString::Format( formatStr, GetNetnameMsg(), layerMaskDescribe() );
}
BITMAPS PCB_VIA::GetMenuImage() const
{
return BITMAPS::via;
}
bool PCB_TRACK::operator==( const BOARD_ITEM& aBoardItem ) const
{
if( aBoardItem.Type() != Type() )
return false;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aBoardItem );
return *this == other;
}
bool PCB_TRACK::operator==( const PCB_TRACK& aOther ) const
{
return m_Start == aOther.m_Start
&& m_End == aOther.m_End
&& m_layer == aOther.m_layer
&& m_width == aOther.m_width
&& m_hasSolderMask == aOther.m_hasSolderMask
&& m_solderMaskMargin == aOther.m_solderMaskMargin;
}
double PCB_TRACK::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_TRACK& other = static_cast<const PCB_TRACK&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( m_width != other.m_width )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
if( m_hasSolderMask != other.m_hasSolderMask )
similarity *= 0.9;
if( m_solderMaskMargin != other.m_solderMaskMargin )
similarity *= 0.9;
return similarity;
}
bool PCB_ARC::operator==( const BOARD_ITEM& aBoardItem ) const
{
if( aBoardItem.Type() != Type() )
return false;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aBoardItem );
return *this == other;
}
bool PCB_ARC::operator==( const PCB_TRACK& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
return *this == other;
}
bool PCB_ARC::operator==( const PCB_ARC& aOther ) const
{
return m_Start == aOther.m_Start
&& m_End == aOther.m_End
&& m_Mid == aOther.m_Mid
&& m_layer == aOther.m_layer
&& GetWidth() == aOther.GetWidth()
&& m_hasSolderMask == aOther.m_hasSolderMask
&& m_solderMaskMargin == aOther.m_solderMaskMargin;
}
double PCB_ARC::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_ARC& other = static_cast<const PCB_ARC&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( GetWidth() != other.GetWidth() )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
if( m_Mid != other.m_Mid )
similarity *= 0.9;
if( m_hasSolderMask != other.m_hasSolderMask )
similarity *= 0.9;
if( m_solderMaskMargin != other.m_solderMaskMargin )
similarity *= 0.9;
return similarity;
}
bool PCB_VIA::operator==( const BOARD_ITEM& aBoardItem ) const
{
if( aBoardItem.Type() != Type() )
return false;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aBoardItem );
return *this == other;
}
bool PCB_VIA::operator==( const PCB_TRACK& aOther ) const
{
if( aOther.Type() != Type() )
return false;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
return *this == other;
}
bool PCB_VIA::operator==( const PCB_VIA& aOther ) const
{
return m_Start == aOther.m_Start
&& m_End == aOther.m_End
&& m_layer == aOther.m_layer
&& m_padStack == aOther.m_padStack
&& m_viaType == aOther.m_viaType
&& m_zoneLayerOverrides == aOther.m_zoneLayerOverrides;
}
double PCB_VIA::Similarity( const BOARD_ITEM& aOther ) const
{
if( aOther.Type() != Type() )
return 0.0;
const PCB_VIA& other = static_cast<const PCB_VIA&>( aOther );
double similarity = 1.0;
if( m_layer != other.m_layer )
similarity *= 0.9;
if( m_Start != other.m_Start )
similarity *= 0.9;
if( m_End != other.m_End )
similarity *= 0.9;
if( m_padStack != other.m_padStack )
similarity *= 0.9;
if( m_viaType != other.m_viaType )
similarity *= 0.9;
if( m_zoneLayerOverrides != other.m_zoneLayerOverrides )
similarity *= 0.9;
return similarity;
}
void PCB_VIA::SetWidth( int aWidth )
{
// This is present because of the parent class. It should never be actually called on a via.
wxASSERT_MSG( false, "Warning: PCB_VIA::SetWidth called without a layer argument" );
m_padStack.SetSize( { aWidth, aWidth }, PADSTACK::ALL_LAYERS );
}
int PCB_VIA::GetWidth() const
{
// This is present because of the parent class. It should never be actually called on a via.
wxASSERT_MSG( false, "Warning: PCB_VIA::GetWidth called without a layer argument" );
return m_padStack.Size( PADSTACK::ALL_LAYERS ).x;
}
void PCB_VIA::SetWidth( PCB_LAYER_ID aLayer, int aWidth )
{
m_padStack.SetSize( { aWidth, aWidth }, aLayer );
}
int PCB_VIA::GetWidth( PCB_LAYER_ID aLayer ) const
{
return m_padStack.Size( aLayer ).x;
}
void PCB_TRACK::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Track track;
track.mutable_id()->set_value( m_Uuid.AsStdString() );
track.mutable_start()->set_x_nm( GetStart().x );
track.mutable_start()->set_y_nm( GetStart().y );
track.mutable_end()->set_x_nm( GetEnd().x );
track.mutable_end()->set_y_nm( GetEnd().y );
track.mutable_width()->set_value_nm( GetWidth() );
track.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) );
track.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
track.mutable_net()->mutable_code()->set_value( GetNetCode() );
track.mutable_net()->set_name( GetNetname() );
// TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( track );
}
bool PCB_TRACK::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Track track;
if( !aContainer.UnpackTo( &track ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( track.id().value() );
SetStart( VECTOR2I( track.start().x_nm(), track.start().y_nm() ) );
SetEnd( VECTOR2I( track.end().x_nm(), track.end().y_nm() ) );
SetWidth( track.width().value_nm() );
SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( track.layer() ) );
SetNetCode( track.net().code().value() );
SetLocked( track.locked() == kiapi::common::types::LockedState::LS_LOCKED );
// TODO m_hasSolderMask and m_solderMaskMargin
return true;
}
void PCB_ARC::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Arc arc;
arc.mutable_id()->set_value( m_Uuid.AsStdString() );
arc.mutable_start()->set_x_nm( GetStart().x );
arc.mutable_start()->set_y_nm( GetStart().y );
arc.mutable_mid()->set_x_nm( GetMid().x );
arc.mutable_mid()->set_y_nm( GetMid().y );
arc.mutable_end()->set_x_nm( GetEnd().x );
arc.mutable_end()->set_y_nm( GetEnd().y );
arc.mutable_width()->set_value_nm( GetWidth() );
arc.set_layer( ToProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( GetLayer() ) );
arc.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
arc.mutable_net()->mutable_code()->set_value( GetNetCode() );
arc.mutable_net()->set_name( GetNetname() );
// TODO m_hasSolderMask and m_solderMaskMargin
aContainer.PackFrom( arc );
}
bool PCB_ARC::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Arc arc;
if( !aContainer.UnpackTo( &arc ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( arc.id().value() );
SetStart( VECTOR2I( arc.start().x_nm(), arc.start().y_nm() ) );
SetMid( VECTOR2I( arc.mid().x_nm(), arc.mid().y_nm() ) );
SetEnd( VECTOR2I( arc.end().x_nm(), arc.end().y_nm() ) );
SetWidth( arc.width().value_nm() );
SetLayer( FromProtoEnum<PCB_LAYER_ID, kiapi::board::types::BoardLayer>( arc.layer() ) );
SetNetCode( arc.net().code().value() );
SetLocked( arc.locked() == kiapi::common::types::LockedState::LS_LOCKED );
// TODO m_hasSolderMask and m_solderMaskMargin
return true;
}
void PCB_VIA::Serialize( google::protobuf::Any &aContainer ) const
{
kiapi::board::types::Via via;
via.mutable_id()->set_value( m_Uuid.AsStdString() );
via.mutable_position()->set_x_nm( GetPosition().x );
via.mutable_position()->set_y_nm( GetPosition().y );
PADSTACK padstack = Padstack();
google::protobuf::Any padStackWrapper;
padstack.Serialize( padStackWrapper );
padStackWrapper.UnpackTo( via.mutable_pad_stack() );
// PADSTACK::m_layerSet is not used by vias
via.mutable_pad_stack()->clear_layers();
kiapi::board::PackLayerSet( *via.mutable_pad_stack()->mutable_layers(), GetLayerSet() );
via.set_type( ToProtoEnum<VIATYPE, kiapi::board::types::ViaType>( GetViaType() ) );
via.set_locked( IsLocked() ? kiapi::common::types::LockedState::LS_LOCKED
: kiapi::common::types::LockedState::LS_UNLOCKED );
via.mutable_net()->mutable_code()->set_value( GetNetCode() );
via.mutable_net()->set_name( GetNetname() );
aContainer.PackFrom( via );
}
bool PCB_VIA::Deserialize( const google::protobuf::Any &aContainer )
{
kiapi::board::types::Via via;
if( !aContainer.UnpackTo( &via ) )
return false;
const_cast<KIID&>( m_Uuid ) = KIID( via.id().value() );
SetStart( VECTOR2I( via.position().x_nm(), via.position().y_nm() ) );
SetEnd( GetStart() );
google::protobuf::Any padStackWrapper;
padStackWrapper.PackFrom( via.pad_stack() );
if( !m_padStack.Deserialize( padStackWrapper ) )
return false;
// PADSTACK::m_layerSet is not used by vias
m_padStack.LayerSet().reset();
SetViaType( FromProtoEnum<VIATYPE>( via.type() ) );
SetNetCode( via.net().code().value() );
SetLocked( via.locked() == kiapi::common::types::LockedState::LS_LOCKED );
return true;
}
bool PCB_TRACK::ApproxCollinear( const PCB_TRACK& aTrack )
{
SEG a( m_Start, m_End );
SEG b( aTrack.GetStart(), aTrack.GetEnd() );
return a.ApproxCollinear( b );
}
MINOPTMAX<int> PCB_TRACK::GetWidthConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( TRACK_WIDTH_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
MINOPTMAX<int> PCB_VIA::GetWidthConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( VIA_DIAMETER_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
MINOPTMAX<int> PCB_VIA::GetDrillConstraint( wxString* aSource ) const
{
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( HOLE_SIZE_CONSTRAINT, this, nullptr, m_layer );
}
if( aSource )
*aSource = constraint.GetName();
return constraint.Value();
}
int PCB_VIA::GetMinAnnulus( PCB_LAYER_ID aLayer, wxString* aSource ) const
{
if( !FlashLayer( aLayer ) )
{
if( aSource )
*aSource = _( "removed annular ring" );
return 0;
}
DRC_CONSTRAINT constraint;
if( GetBoard() && GetBoard()->GetDesignSettings().m_DRCEngine )
{
BOARD_DESIGN_SETTINGS& bds = GetBoard()->GetDesignSettings();
constraint = bds.m_DRCEngine->EvalRules( ANNULAR_WIDTH_CONSTRAINT, this, nullptr, aLayer );
}
if( constraint.Value().HasMin() )
{
if( aSource )
*aSource = constraint.GetName();
return constraint.Value().Min();
}
return 0;
}
int PCB_VIA::GetDrillValue() const
{
if( m_padStack.Drill().size.x > 0 ) // Use the specific value.
return m_padStack.Drill().size.x;
// Use the default value from the Netclass
NETCLASS* netclass = GetEffectiveNetClass();
if( GetViaType() == VIATYPE::MICROVIA )
return netclass->GetuViaDrill();
return netclass->GetViaDrill();
}
EDA_ITEM_FLAGS PCB_TRACK::IsPointOnEnds( const VECTOR2I& point, int min_dist ) const
{
EDA_ITEM_FLAGS result = 0;
if( min_dist < 0 )
min_dist = m_width / 2;
if( min_dist == 0 )
{
if( m_Start == point )
result |= STARTPOINT;
if( m_End == point )
result |= ENDPOINT;
}
else
{
double dist = m_Start.Distance( point );
if( min_dist >= dist )
result |= STARTPOINT;
dist = m_End.Distance( point );
if( min_dist >= dist )
result |= ENDPOINT;
}
return result;
}
const BOX2I PCB_TRACK::GetBoundingBox() const
{
// end of track is round, this is its radius, rounded up
int radius = ( m_width + 1 ) / 2;
int ymax, xmax, ymin, xmin;
if( Type() == PCB_VIA_T )
{
ymax = m_Start.y;
xmax = m_Start.x;
ymin = m_Start.y;
xmin = m_Start.x;
}
else if( Type() == PCB_ARC_T )
{
std::shared_ptr<SHAPE> arc = GetEffectiveShape();
BOX2I bbox = arc->BBox();
xmin = bbox.GetLeft();
xmax = bbox.GetRight();
ymin = bbox.GetTop();
ymax = bbox.GetBottom();
}
else
{
ymax = std::max( m_Start.y, m_End.y );
xmax = std::max( m_Start.x, m_End.x );
ymin = std::min( m_Start.y, m_End.y );
xmin = std::min( m_Start.x, m_End.x );
}
ymax += radius;
xmax += radius;
ymin -= radius;
xmin -= radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
return BOX2ISafe( VECTOR2I( xmin, ymin ),
VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) );
}
const BOX2I PCB_VIA::GetBoundingBox() const
{
int radius = 0;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
radius = std::max( radius, GetWidth( aLayer ) );
} );
// via is round, this is its radius, rounded up
radius = ( radius + 1 ) / 2;
int ymax = m_Start.y + radius;
int xmax = m_Start.x + radius;
int ymin = m_Start.y - radius;
int xmin = m_Start.x - radius;
// return a rectangle which is [pos,dim) in nature. therefore the +1
return BOX2ISafe( VECTOR2I( xmin, ymin ),
VECTOR2L( (int64_t) xmax - xmin + 1, (int64_t) ymax - ymin + 1 ) );
}
double PCB_TRACK::GetLength() const
{
return m_Start.Distance( m_End );
}
void PCB_TRACK::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_Start, aRotCentre, aAngle );
RotatePoint( m_End, aRotCentre, aAngle );
}
void PCB_ARC::Rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
RotatePoint( m_Start, aRotCentre, aAngle );
RotatePoint( m_End, aRotCentre, aAngle );
RotatePoint( m_Mid, aRotCentre, aAngle );
}
void PCB_TRACK::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
MIRROR( m_Start, aCentre, aFlipDirection );
MIRROR( m_End, aCentre, aFlipDirection );
}
void PCB_ARC::Mirror( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
MIRROR( m_Start, aCentre, aFlipDirection );
MIRROR( m_End, aCentre, aFlipDirection );
MIRROR( m_Mid, aCentre, aFlipDirection );
}
void PCB_TRACK::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
}
SetLayer( GetBoard()->FlipLayer( GetLayer() ) );
}
void PCB_ARC::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
m_Mid.x = aCentre.x - ( m_Mid.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
m_Mid.y = aCentre.y - ( m_Mid.y - aCentre.y );
}
SetLayer( GetBoard()->FlipLayer( GetLayer() ) );
}
bool PCB_ARC::IsCCW() const
{
VECTOR2L start = m_Start;
VECTOR2L start_end = m_End - start;
VECTOR2L start_mid = m_Mid - start;
return start_end.Cross( start_mid ) < 0;
}
void PCB_VIA::Flip( const VECTOR2I& aCentre, FLIP_DIRECTION aFlipDirection )
{
if( aFlipDirection == FLIP_DIRECTION::LEFT_RIGHT )
{
m_Start.x = aCentre.x - ( m_Start.x - aCentre.x );
m_End.x = aCentre.x - ( m_End.x - aCentre.x );
}
else
{
m_Start.y = aCentre.y - ( m_Start.y - aCentre.y );
m_End.y = aCentre.y - ( m_End.y - aCentre.y );
}
if( GetViaType() != VIATYPE::THROUGH )
{
PCB_LAYER_ID top_layer;
PCB_LAYER_ID bottom_layer;
LayerPair( &top_layer, &bottom_layer );
top_layer = GetBoard()->FlipLayer( top_layer );
bottom_layer = GetBoard()->FlipLayer( bottom_layer );
SetLayerPair( top_layer, bottom_layer );
}
}
INSPECT_RESULT PCB_TRACK::Visit( INSPECTOR inspector, void* testData,
const std::vector<KICAD_T>& aScanTypes )
{
for( KICAD_T scanType : aScanTypes )
{
if( scanType == Type() )
{
if( INSPECT_RESULT::QUIT == inspector( this, testData ) )
return INSPECT_RESULT::QUIT;
}
}
return INSPECT_RESULT::CONTINUE;
}
std::shared_ptr<SHAPE_SEGMENT> PCB_VIA::GetEffectiveHoleShape() const
{
return std::make_shared<SHAPE_SEGMENT>( SEG( m_Start, m_Start ), Padstack().Drill().size.x );
}
// clang-format off: the suggestion is slightly less readable
void PCB_VIA::SetFrontTentingMode( TENTING_MODE aMode )
{
switch( aMode )
{
case TENTING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_solder_mask.reset(); break;
case TENTING_MODE::TENTED: m_padStack.FrontOuterLayers().has_solder_mask = true; break;
case TENTING_MODE::NOT_TENTED: m_padStack.FrontOuterLayers().has_solder_mask = false; break;
}
}
TENTING_MODE PCB_VIA::GetFrontTentingMode() const
{
if( m_padStack.FrontOuterLayers().has_solder_mask.has_value() )
{
return *m_padStack.FrontOuterLayers().has_solder_mask ?
TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED;
}
return TENTING_MODE::FROM_RULES;
}
void PCB_VIA::SetBackTentingMode( TENTING_MODE aMode )
{
switch( aMode )
{
case TENTING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_solder_mask.reset(); break;
case TENTING_MODE::TENTED: m_padStack.BackOuterLayers().has_solder_mask = true; break;
case TENTING_MODE::NOT_TENTED: m_padStack.BackOuterLayers().has_solder_mask = false; break;
}
}
TENTING_MODE PCB_VIA::GetBackTentingMode() const
{
if( m_padStack.BackOuterLayers().has_solder_mask.has_value() )
{
return *m_padStack.BackOuterLayers().has_solder_mask ?
TENTING_MODE::TENTED : TENTING_MODE::NOT_TENTED;
}
return TENTING_MODE::FROM_RULES;
}
void PCB_VIA::SetFrontCoveringMode( COVERING_MODE aMode )
{
switch( aMode )
{
case COVERING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_covering.reset(); break;
case COVERING_MODE::COVERED: m_padStack.FrontOuterLayers().has_covering = true; break;
case COVERING_MODE::NOT_COVERED: m_padStack.FrontOuterLayers().has_covering = false; break;
}
}
COVERING_MODE PCB_VIA::GetFrontCoveringMode() const
{
if( m_padStack.FrontOuterLayers().has_covering.has_value() )
{
return *m_padStack.FrontOuterLayers().has_covering ?
COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED;
}
return COVERING_MODE::FROM_RULES;
}
void PCB_VIA::SetBackCoveringMode( COVERING_MODE aMode )
{
switch( aMode )
{
case COVERING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_covering.reset(); break;
case COVERING_MODE::COVERED: m_padStack.BackOuterLayers().has_covering = true; break;
case COVERING_MODE::NOT_COVERED: m_padStack.BackOuterLayers().has_covering = false; break;
}
}
COVERING_MODE PCB_VIA::GetBackCoveringMode() const
{
if( m_padStack.BackOuterLayers().has_covering.has_value() )
{
return *m_padStack.BackOuterLayers().has_covering ?
COVERING_MODE::COVERED : COVERING_MODE::NOT_COVERED;
}
return COVERING_MODE::FROM_RULES;
}
void PCB_VIA::SetFrontPluggingMode( PLUGGING_MODE aMode )
{
switch( aMode )
{
case PLUGGING_MODE::FROM_RULES: m_padStack.FrontOuterLayers().has_plugging.reset(); break;
case PLUGGING_MODE::PLUGGED: m_padStack.FrontOuterLayers().has_plugging = true; break;
case PLUGGING_MODE::NOT_PLUGGED: m_padStack.FrontOuterLayers().has_plugging = false; break;
}
}
PLUGGING_MODE PCB_VIA::GetFrontPluggingMode() const
{
if( m_padStack.FrontOuterLayers().has_plugging.has_value() )
{
return *m_padStack.FrontOuterLayers().has_plugging ?
PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED;
}
return PLUGGING_MODE::FROM_RULES;
}
void PCB_VIA::SetBackPluggingMode( PLUGGING_MODE aMode )
{
switch( aMode )
{
case PLUGGING_MODE::FROM_RULES: m_padStack.BackOuterLayers().has_plugging.reset(); break;
case PLUGGING_MODE::PLUGGED: m_padStack.BackOuterLayers().has_plugging = true; break;
case PLUGGING_MODE::NOT_PLUGGED: m_padStack.BackOuterLayers().has_plugging = false; break;
}
}
PLUGGING_MODE PCB_VIA::GetBackPluggingMode() const
{
if( m_padStack.BackOuterLayers().has_plugging.has_value() )
{
return *m_padStack.BackOuterLayers().has_plugging ?
PLUGGING_MODE::PLUGGED : PLUGGING_MODE::NOT_PLUGGED;
}
return PLUGGING_MODE::FROM_RULES;
}
void PCB_VIA::SetCappingMode( CAPPING_MODE aMode )
{
switch( aMode )
{
case CAPPING_MODE::FROM_RULES: m_padStack.Drill().is_capped.reset(); break;
case CAPPING_MODE::CAPPED: m_padStack.Drill().is_capped = true; break;
case CAPPING_MODE::NOT_CAPPED: m_padStack.Drill().is_capped = false; break;
}
}
CAPPING_MODE PCB_VIA::GetCappingMode() const
{
if( m_padStack.Drill().is_capped.has_value() )
{
return *m_padStack.Drill().is_capped ?
CAPPING_MODE::CAPPED : CAPPING_MODE::NOT_CAPPED;
}
return CAPPING_MODE::FROM_RULES;
}
void PCB_VIA::SetFillingMode( FILLING_MODE aMode )
{
switch( aMode )
{
case FILLING_MODE::FROM_RULES: m_padStack.Drill().is_filled.reset(); break;
case FILLING_MODE::FILLED: m_padStack.Drill().is_filled = true; break;
case FILLING_MODE::NOT_FILLED: m_padStack.Drill().is_filled = false; break;
}
}
FILLING_MODE PCB_VIA::GetFillingMode() const
{
if( m_padStack.Drill().is_filled.has_value() )
{
return *m_padStack.Drill().is_filled ?
FILLING_MODE::FILLED : FILLING_MODE::NOT_FILLED;
}
return FILLING_MODE::FROM_RULES;
}
// clang-format on: the suggestion is slightly less readable
bool PCB_VIA::IsTented( PCB_LAYER_ID aLayer ) const
{
wxCHECK_MSG( IsFrontLayer( aLayer ) || IsBackLayer( aLayer ), true,
"Invalid layer passed to IsTented" );
bool front = IsFrontLayer( aLayer );
if( front && m_padStack.FrontOuterLayers().has_solder_mask.has_value() )
return *m_padStack.FrontOuterLayers().has_solder_mask;
if( !front && m_padStack.BackOuterLayers().has_solder_mask.has_value() )
return *m_padStack.BackOuterLayers().has_solder_mask;
if( const BOARD* board = GetBoard() )
{
return front ? board->GetDesignSettings().m_TentViasFront
: board->GetDesignSettings().m_TentViasBack;
}
return true;
}
int PCB_VIA::GetSolderMaskExpansion() const
{
if( const BOARD* board = GetBoard() )
return board->GetDesignSettings().m_SolderMaskExpansion;
else
return 0;
}
int PCB_TRACK::GetSolderMaskExpansion() const
{
int margin = m_solderMaskMargin.value_or( 0 );
// If no local margin is set, get the board's solder mask expansion value
if( !m_solderMaskMargin.has_value() )
{
const BOARD* board = GetBoard();
if( board )
margin = board->GetDesignSettings().m_SolderMaskExpansion;
}
// Ensure the resulting mask opening has a non-negative size
if( margin < 0 )
margin = std::max( margin, -m_width / 2 );
return margin;
}
bool PCB_TRACK::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
if( aLayer == m_layer )
{
return true;
}
if( m_hasSolderMask
&& ( ( aLayer == F_Mask && m_layer == F_Cu )
|| ( aLayer == B_Mask && m_layer == B_Cu ) ) )
{
return true;
}
return false;
}
bool PCB_VIA::IsOnLayer( PCB_LAYER_ID aLayer ) const
{
#if 0
// Nice and simple, but raises its ugly head in performance profiles....
return GetLayerSet().test( aLayer );
#endif
if( IsCopperLayer( aLayer ) &&
LAYER_RANGE::Contains( Padstack().Drill().start, Padstack().Drill().end, aLayer ) )
{
return true;
}
// Test for via on mask layers: a via on on a mask layer if not tented and if
// it is on the corresponding external copper layer
if( aLayer == F_Mask )
return Padstack().Drill().start == F_Cu && !IsTented( F_Mask );
else if( aLayer == B_Mask )
return Padstack().Drill().end == B_Cu && !IsTented( B_Mask );
return false;
}
bool PCB_VIA::HasValidLayerPair( int aCopperLayerCount )
{
// return true if top and bottom layers are valid, depending on the copper layer count
// aCopperLayerCount is expected >= 2
int layer_id = aCopperLayerCount*2;
if( Padstack().Drill().start > B_Cu )
{
if( Padstack().Drill().start > layer_id )
return false;
}
if( Padstack().Drill().end > B_Cu )
{
if( Padstack().Drill().end > layer_id )
return false;
}
return true;
}
PCB_LAYER_ID PCB_VIA::GetLayer() const
{
return Padstack().Drill().start;
}
void PCB_VIA::SetLayer( PCB_LAYER_ID aLayer )
{
Padstack().Drill().start = aLayer;
}
void PCB_TRACK::SetLayerSet( const LSET& aLayerSet )
{
aLayerSet.RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
if( IsCopperLayer( layer ) )
SetLayer( layer );
else if( IsSolderMaskLayer( layer ) )
SetHasSolderMask( true );
} );
}
LSET PCB_TRACK::GetLayerSet() const
{
LSET layermask( { m_layer } );
if( m_hasSolderMask )
{
if( layermask.test( F_Cu ) )
layermask.set( F_Mask );
else if( layermask.test( B_Cu ) )
layermask.set( B_Mask );
}
return layermask;
}
LSET PCB_VIA::GetLayerSet() const
{
LSET layermask;
if( Padstack().Drill().start < PCBNEW_LAYER_ID_START )
return layermask;
if( GetViaType() == VIATYPE::THROUGH )
{
layermask = LSET::AllCuMask( BoardCopperLayerCount() );
}
else
{
LAYER_RANGE range( Padstack().Drill().start, Padstack().Drill().end, BoardCopperLayerCount() );
int cnt = BoardCopperLayerCount();
// PCB_LAYER_IDs are numbered from front to back, this is top to bottom.
for( PCB_LAYER_ID id : range )
{
layermask.set( id );
if( --cnt <= 0 )
break;
}
}
if( !IsTented( F_Mask ) && layermask.test( F_Cu ) )
layermask.set( F_Mask );
if( !IsTented( B_Mask ) && layermask.test( B_Cu ) )
layermask.set( B_Mask );
return layermask;
}
void PCB_VIA::SetLayerSet( const LSET& aLayerSet )
{
// Vias do not use a LSET, just a top and bottom layer pair
// So we need to set these 2 layers according to the allowed layers in aLayerSet
// For via through, only F_Cu and B_Cu are allowed. aLayerSet is ignored
if( GetViaType() == VIATYPE::THROUGH )
{
Padstack().Drill().start = F_Cu;
Padstack().Drill().end = B_Cu;
return;
}
// For blind buried vias, find the top and bottom layers
bool top_found = false;
bool bottom_found = false;
aLayerSet.RunOnLayers(
[&]( PCB_LAYER_ID layer )
{
// tpo layer and bottom Layer are copper layers, so consider only copper layers
if( IsCopperLayer( layer ) )
{
// The top layer is the first layer found in list and
// cannot the B_Cu
if( !top_found && layer != B_Cu )
{
Padstack().Drill().start = layer;
top_found = true;
}
// The bottom layer is the last layer found in list or B_Cu
if( !bottom_found )
Padstack().Drill().end = layer;
if( layer == B_Cu )
bottom_found = true;
}
} );
}
void PCB_VIA::SetLayerPair( PCB_LAYER_ID aTopLayer, PCB_LAYER_ID aBottomLayer )
{
Padstack().Drill().start = aTopLayer;
Padstack().Drill().end = aBottomLayer;
SanitizeLayers();
}
void PCB_VIA::SetTopLayer( PCB_LAYER_ID aLayer )
{
Padstack().Drill().start = aLayer;
}
void PCB_VIA::SetBottomLayer( PCB_LAYER_ID aLayer )
{
Padstack().Drill().end = aLayer;
}
void PCB_VIA::LayerPair( PCB_LAYER_ID* top_layer, PCB_LAYER_ID* bottom_layer ) const
{
PCB_LAYER_ID t_layer = F_Cu;
PCB_LAYER_ID b_layer = B_Cu;
if( GetViaType() != VIATYPE::THROUGH )
{
b_layer = Padstack().Drill().end;
t_layer = Padstack().Drill().start;
if( !IsCopperLayerLowerThan( b_layer, t_layer ) )
std::swap( b_layer, t_layer );
}
if( top_layer )
*top_layer = t_layer;
if( bottom_layer )
*bottom_layer = b_layer;
}
PCB_LAYER_ID PCB_VIA::TopLayer() const
{
return Padstack().Drill().start;
}
PCB_LAYER_ID PCB_VIA::BottomLayer() const
{
return Padstack().Drill().end;
}
void PCB_VIA::SanitizeLayers()
{
if( GetViaType() == VIATYPE::THROUGH )
{
Padstack().Drill().start = F_Cu;
Padstack().Drill().end = B_Cu;
}
if( !IsCopperLayerLowerThan( Padstack().Drill().end, Padstack().Drill().start) )
std::swap( Padstack().Drill().end, Padstack().Drill().start );
}
bool PCB_VIA::FlashLayer( LSET aLayers ) const
{
for( size_t ii = 0; ii < aLayers.size(); ++ii )
{
if( aLayers.test( ii ) )
{
PCB_LAYER_ID layer = PCB_LAYER_ID( ii );
if( FlashLayer( layer ) )
return true;
}
}
return false;
}
bool PCB_VIA::FlashLayer( int aLayer ) const
{
// Return the "normal" shape if the caller doesn't specify a particular layer
if( aLayer == UNDEFINED_LAYER )
return true;
const BOARD* board = GetBoard();
PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aLayer );
if( !board )
return true;
if( !IsOnLayer( layer ) )
return false;
if( !IsCopperLayer( layer ) )
return true;
switch( Padstack().UnconnectedLayerMode() )
{
case PADSTACK::UNCONNECTED_LAYER_MODE::KEEP_ALL:
return true;
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_EXCEPT_START_AND_END:
{
if( layer == Padstack().Drill().start || layer == Padstack().Drill().end )
return true;
// Check for removal below
break;
}
case PADSTACK::UNCONNECTED_LAYER_MODE::REMOVE_ALL:
// Check for removal below
break;
}
if( GetZoneLayerOverride( layer ) == ZLO_FORCE_FLASHED )
{
return true;
}
else
{
// Must be static to keep from raising its ugly head in performance profiles
static std::initializer_list<KICAD_T> nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_PAD_T };
return board->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes );
}
}
void PCB_VIA::ClearZoneLayerOverrides()
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
for( PCB_LAYER_ID layer : LAYER_RANGE( F_Cu, B_Cu, BoardCopperLayerCount() ) )
m_zoneLayerOverrides[layer] = ZLO_NONE;
}
const ZONE_LAYER_OVERRIDE& PCB_VIA::GetZoneLayerOverride( PCB_LAYER_ID aLayer ) const
{
static const ZONE_LAYER_OVERRIDE defaultOverride = ZLO_NONE;
auto it = m_zoneLayerOverrides.find( aLayer );
return it != m_zoneLayerOverrides.end() ? it->second : defaultOverride;
}
void PCB_VIA::SetZoneLayerOverride( PCB_LAYER_ID aLayer, ZONE_LAYER_OVERRIDE aOverride )
{
std::unique_lock<std::mutex> cacheLock( m_zoneLayerOverridesMutex );
m_zoneLayerOverrides[aLayer] = aOverride;
}
void PCB_VIA::GetOutermostConnectedLayers( PCB_LAYER_ID* aTopmost,
PCB_LAYER_ID* aBottommost ) const
{
*aTopmost = UNDEFINED_LAYER;
*aBottommost = UNDEFINED_LAYER;
static std::initializer_list<KICAD_T> nonZoneTypes = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T,
PCB_PAD_T };
for( int layer = TopLayer(); layer <= BottomLayer(); ++layer )
{
bool connected = false;
if( GetZoneLayerOverride( static_cast<PCB_LAYER_ID>( layer ) ) == ZLO_FORCE_FLASHED )
{
connected = true;
}
else if( GetBoard()->GetConnectivity()->IsConnectedOnLayer( this, layer, nonZoneTypes ) )
{
connected = true;
}
if( connected )
{
if( *aTopmost == UNDEFINED_LAYER )
*aTopmost = ToLAYER_ID( layer );
*aBottommost = ToLAYER_ID( layer );
}
}
}
std::vector<int> PCB_TRACK::ViewGetLayers() const
{
// Show the track and its netname on different layers
const PCB_LAYER_ID layer = GetLayer();
std::vector<int> layers{
layer,
GetNetnameLayer( layer ),
LAYER_CLEARANCE_START + layer,
};
layers.reserve( 6 );
if( m_hasSolderMask )
{
if( m_layer == F_Cu )
layers.push_back( F_Mask );
else if( m_layer == B_Cu )
layers.push_back( B_Mask );
}
if( IsLocked() )
layers.push_back( LAYER_LOCKED_ITEM_SHADOW );
return layers;
}
double PCB_TRACK::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const
{
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() );
PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
if( !aView->IsLayerVisible( LAYER_TRACKS ) )
return LOD_HIDE;
if( IsNetnameLayer( aLayer ) )
{
if( GetNetCode() <= NETINFO_LIST::UNCONNECTED )
return LOD_HIDE;
// Hide netnames on dimmed tracks
if( renderSettings->GetHighContrast() )
{
if( m_layer != renderSettings->GetPrimaryHighContrastLayer() )
return LOD_HIDE;
}
VECTOR2I start( GetStart() );
VECTOR2I end( GetEnd() );
// Calc the approximate size of the netname (assume square chars)
SEG::ecoord nameSize = GetDisplayNetname().size() * GetWidth();
if( VECTOR2I( end - start ).SquaredEuclideanNorm() < nameSize * nameSize )
return LOD_HIDE;
BOX2I clipBox = BOX2ISafe( aView->GetViewport() );
ClipLine( &clipBox, start.x, start.y, end.x, end.y );
if( VECTOR2I( end - start ).SquaredEuclideanNorm() == 0 )
return LOD_HIDE;
// Netnames will be shown only if zoom is appropriate
return lodScaleForThreshold( aView, m_width, pcbIUScale.mmToIU( 4.0 ) );
}
if( aLayer == LAYER_LOCKED_ITEM_SHADOW )
{
// Hide shadow if the main layer is not shown
if( !aView->IsLayerVisible( m_layer ) )
return LOD_HIDE;
// Hide shadow on dimmed tracks
if( renderSettings->GetHighContrast() )
{
if( m_layer != renderSettings->GetPrimaryHighContrastLayer() )
return LOD_HIDE;
}
}
// Other layers are shown without any conditions
return LOD_SHOW;
}
const BOX2I PCB_TRACK::ViewBBox() const
{
BOX2I bbox = GetBoundingBox();
if( const BOARD* board = GetBoard() )
bbox.Inflate( 2 * board->GetDesignSettings().GetBiggestClearanceValue() );
else
bbox.Inflate( GetWidth() ); // Add a bit extra for safety
return bbox;
}
std::vector<int> PCB_VIA::ViewGetLayers() const
{
LAYER_RANGE layers( Padstack().Drill().start, Padstack().Drill().end, MAX_CU_LAYERS );
std::vector<int> ret_layers{ LAYER_VIA_HOLES, LAYER_VIA_HOLEWALLS, LAYER_VIA_NETNAMES };
ret_layers.reserve( MAX_CU_LAYERS + 6 );
// TODO(JE) Rendering order issue
#if 0
// Blind/buried vias (and microvias) use a different net name layer
PCB_LAYER_ID layerTop, layerBottom;
LayerPair( &layerTop, &layerBottom );
bool isBlindBuried =
m_viaType == VIATYPE::BLIND_BURIED
|| ( m_viaType == VIATYPE::MICROVIA && ( layerTop != F_Cu || layerBottom != B_Cu ) );
#endif
LSET cuMask = LSET::AllCuMask();
if( const BOARD* board = GetBoard() )
cuMask = board->GetEnabledLayers();
for( PCB_LAYER_ID layer : layers )
{
if( !cuMask.Contains( layer ) )
continue;
ret_layers.push_back( LAYER_VIA_COPPER_START + layer );
ret_layers.push_back( LAYER_CLEARANCE_START + layer );
}
if( IsLocked() )
ret_layers.push_back( LAYER_LOCKED_ITEM_SHADOW );
// Vias can also be on a solder mask layer. They are on these layers or not,
// depending on the plot and solder mask options
if( IsOnLayer( F_Mask ) )
ret_layers.push_back( F_Mask );
if( IsOnLayer( B_Mask ) )
ret_layers.push_back( B_Mask );
return ret_layers;
}
double PCB_VIA::ViewGetLOD( int aLayer, const KIGFX::VIEW* aView ) const
{
PCB_PAINTER* painter = static_cast<PCB_PAINTER*>( aView->GetPainter() );
PCB_RENDER_SETTINGS* renderSettings = painter->GetSettings();
LSET visible = LSET::AllLayersMask();
// Meta control for hiding all vias
if( !aView->IsLayerVisible( LAYER_VIAS ) )
return LOD_HIDE;
// Handle board visibility
if( const BOARD* board = GetBoard() )
visible = board->GetVisibleLayers() & board->GetEnabledLayers();
int width = GetWidth( ToLAYER_ID( aLayer ) );
// In high contrast mode don't show vias that don't cross the high-contrast layer
if( renderSettings->GetHighContrast() )
{
PCB_LAYER_ID highContrastLayer = renderSettings->GetPrimaryHighContrastLayer();
if( LSET::FrontTechMask().Contains( highContrastLayer ) )
highContrastLayer = F_Cu;
else if( LSET::BackTechMask().Contains( highContrastLayer ) )
highContrastLayer = B_Cu;
if( IsCopperLayer( highContrastLayer ) && GetViaType() != VIATYPE::THROUGH )
{
if( IsCopperLayerLowerThan( Padstack().Drill().start, highContrastLayer )
|| IsCopperLayerLowerThan( highContrastLayer, Padstack().Drill().end ) )
{
return LOD_HIDE;
}
}
}
if( IsHoleLayer( aLayer ) )
{
if( m_viaType == VIATYPE::THROUGH )
{
// Show a through via's hole if any physical layer is shown
if( !( visible & LSET::PhysicalLayersMask() ).any() )
return LOD_HIDE;
}
else
{
// Show a blind or micro via's hole if it crosses a visible layer
if( !( visible & GetLayerSet() ).any() )
return LOD_HIDE;
}
// The hole won't be visible anyway at this scale
return (double) pcbIUScale.mmToIU( 0.25 ) / GetDrillValue();
}
else if( IsNetnameLayer( aLayer ) )
{
if( renderSettings->GetHighContrast() )
{
// Hide netnames unless via is flashed to a high-contrast layer
if( !FlashLayer( renderSettings->GetPrimaryHighContrastLayer() ) )
return LOD_HIDE;
}
else
{
// Hide netnames unless pad is flashed to a visible layer
if( !FlashLayer( visible ) )
return LOD_HIDE;
}
// Netnames will be shown only if zoom is appropriate
return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 10 ) );
}
if( !IsCopperLayer( aLayer ) )
return lodScaleForThreshold( aView, width, pcbIUScale.mmToIU( 0.6 ) );
return LOD_SHOW;
}
wxString PCB_TRACK::GetFriendlyName() const
{
switch( Type() )
{
case PCB_ARC_T: return _( "Track (arc)" );
case PCB_VIA_T: return _( "Via" );
case PCB_TRACE_T:
default: return _( "Track" );
}
}
void PCB_TRACK::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
BOARD* board = GetBoard();
aList.emplace_back( _( "Type" ), GetFriendlyName() );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
aList.emplace_back( _( "Width" ), aFrame->MessageTextFromValue( m_width ) );
if( Type() == PCB_ARC_T )
{
double radius = static_cast<PCB_ARC*>( this )->GetRadius();
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( radius ) );
}
aList.emplace_back( _( "Segment Length" ), aFrame->MessageTextFromValue( GetLength() ) );
// Display full track length (in Pcbnew)
if( board && GetNetCode() > 0 )
{
int count;
double trackLen;
double lenPadToDie;
std::tie( count, trackLen, lenPadToDie ) = board->GetTrackLength( *this );
aList.emplace_back( _( "Routed Length" ), aFrame->MessageTextFromValue( trackLen ) );
if( lenPadToDie != 0 )
{
msg = aFrame->MessageTextFromValue( lenPadToDie );
aList.emplace_back( _( "Pad To Die Length" ), msg );
msg = aFrame->MessageTextFromValue( trackLen + lenPadToDie );
aList.emplace_back( _( "Full Length" ), msg );
}
}
wxString source;
int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ), source ) );
MINOPTMAX<int> constraintValue = GetWidthConstraint( &source );
msg = aFrame->MessageTextFromMinOptMax( constraintValue );
if( !msg.IsEmpty() )
{
aList.emplace_back( wxString::Format( _( "Width Constraints: %s" ), msg ),
wxString::Format( _( "(from %s)" ), source ) );
}
}
void PCB_VIA::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString msg;
switch( GetViaType() )
{
case VIATYPE::MICROVIA: msg = _( "Micro Via" ); break;
case VIATYPE::BLIND_BURIED: msg = _( "Blind/Buried Via" ); break;
case VIATYPE::THROUGH: msg = _( "Through Via" ); break;
default: msg = _( "Via" ); break;
}
aList.emplace_back( _( "Type" ), msg );
GetMsgPanelInfoBase_Common( aFrame, aList );
aList.emplace_back( _( "Layer" ), layerMaskDescribe() );
// TODO(JE) padstacks
aList.emplace_back( _( "Diameter" ),
aFrame->MessageTextFromValue( GetWidth( PADSTACK::ALL_LAYERS ) ) );
aList.emplace_back( _( "Hole" ), aFrame->MessageTextFromValue( GetDrillValue() ) );
wxString source;
int clearance = GetOwnClearance( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Clearance: %s" ),
aFrame->MessageTextFromValue( clearance ) ),
wxString::Format( _( "(from %s)" ), source ) );
int minAnnulus = GetMinAnnulus( GetLayer(), &source );
aList.emplace_back( wxString::Format( _( "Min Annular Width: %s" ),
aFrame->MessageTextFromValue( minAnnulus ) ),
wxString::Format( _( "(from %s)" ), source ) );
}
void PCB_TRACK::GetMsgPanelInfoBase_Common( EDA_DRAW_FRAME* aFrame,
std::vector<MSG_PANEL_ITEM>& aList ) const
{
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ) );
aList.emplace_back( _( "Resolved Netclass" ),
UnescapeString( GetEffectiveNetClass()->GetHumanReadableName() ) );
#if 0 // Enable for debugging
if( GetBoard() )
aList.emplace_back( _( "NetCode" ), fmt::format( "{}", GetNetCode() ) );
aList.emplace_back( wxT( "Flags" ), fmt::format( "#08X", m_flags ) );
aList.emplace_back( wxT( "Start pos" ), fmt::format( "{} {}", m_Start.x, m_Start.y ) );
aList.emplace_back( wxT( "End pos" ), fmt::format( "{} {}", m_End.x, m_End.y ) );
#endif
if( aFrame->GetName() == PCB_EDIT_FRAME_NAME && IsLocked() )
aList.emplace_back( _( "Status" ), _( "Locked" ) );
}
wxString PCB_VIA::layerMaskDescribe() const
{
const BOARD* board = GetBoard();
PCB_LAYER_ID top_layer;
PCB_LAYER_ID bottom_layer;
LayerPair( &top_layer, &bottom_layer );
return board->GetLayerName( top_layer ) + wxT( " - " ) + board->GetLayerName( bottom_layer );
}
bool PCB_TRACK::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
return TestSegmentHit( aPosition, m_Start, m_End, aAccuracy + ( m_width / 2 ) );
}
bool PCB_ARC::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
double max_dist = aAccuracy + ( GetWidth() / 2.0 );
// Short-circuit common cases where the arc is connected to a track or via at an endpoint
if( GetStart().Distance( aPosition ) <= max_dist || GetEnd().Distance( aPosition ) <= max_dist )
{
return true;
}
VECTOR2L center = GetPosition();
VECTOR2L relpos = aPosition - center;
int64_t dist = relpos.EuclideanNorm();
double radius = GetRadius();
if( std::abs( dist - radius ) > max_dist )
return false;
EDA_ANGLE arc_angle = GetAngle();
EDA_ANGLE arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg
EDA_ANGLE arc_hittest( relpos );
// Calculate relative angle between the starting point of the arc, and the test point
arc_hittest -= arc_angle_start;
// Normalise arc_hittest between 0 ... 360 deg
arc_hittest.Normalize();
if( arc_angle < ANGLE_0 )
return arc_hittest >= ANGLE_360 + arc_angle;
return arc_hittest <= arc_angle;
}
bool PCB_VIA::HitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
bool hit = false;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( hit )
return;
int max_dist = aAccuracy + ( GetWidth( aLayer ) / 2 );
// rel_pos is aPosition relative to m_Start (or the center of the via)
VECTOR2D rel_pos = aPosition - m_Start;
double dist = rel_pos.x * rel_pos.x + rel_pos.y * rel_pos.y;
if( dist <= static_cast<double>( max_dist ) * max_dist )
hit = true;
} );
return hit;
}
bool PCB_TRACK::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
if( aContained )
return arect.Contains( GetStart() ) && arect.Contains( GetEnd() );
else
return arect.Intersects( GetStart(), GetEnd() );
}
bool PCB_ARC::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
BOX2I box( GetStart() );
box.Merge( GetMid() );
box.Merge( GetEnd() );
box.Inflate( GetWidth() / 2 );
if( aContained )
return arect.Contains( box );
else
return arect.Intersects( box );
}
bool PCB_VIA::HitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
BOX2I arect = aRect;
arect.Inflate( aAccuracy );
bool hit = false;
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID aLayer )
{
if( hit )
return;
BOX2I box( GetStart() );
box.Inflate( GetWidth( aLayer ) / 2 );
if( aContained )
hit = arect.Contains( box );
else
hit = arect.IntersectsCircle( GetStart(), GetWidth( aLayer ) / 2 );
} );
return hit;
}
wxString PCB_TRACK::GetItemDescription( UNITS_PROVIDER* aUnitsProvider, bool aFull ) const
{
return wxString::Format( Type() == PCB_ARC_T ? _("Track (arc) %s on %s, length %s" )
: _("Track %s on %s, length %s" ),
GetNetnameMsg(),
GetLayerName(),
aUnitsProvider->MessageTextFromValue( GetLength() ) );
}
BITMAPS PCB_TRACK::GetMenuImage() const
{
return BITMAPS::add_tracks;
}
void PCB_TRACK::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_TRACE_T );
std::swap( *((PCB_TRACK*) this), *((PCB_TRACK*) aImage) );
}
void PCB_ARC::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_ARC_T );
std::swap( *this, *static_cast<PCB_ARC*>( aImage ) );
}
void PCB_VIA::swapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_VIA_T );
std::swap( *((PCB_VIA*) this), *((PCB_VIA*) aImage) );
}
VECTOR2I PCB_ARC::GetPosition() const
{
VECTOR2I center = CalcArcCenter( m_Start, m_Mid, m_End );
return center;
}
double PCB_ARC::GetRadius() const
{
auto center = CalcArcCenter( m_Start, m_Mid , m_End );
return center.Distance( m_Start );
}
EDA_ANGLE PCB_ARC::GetAngle() const
{
VECTOR2D center = GetPosition();
EDA_ANGLE angle1 = EDA_ANGLE( m_Mid - center ) - EDA_ANGLE( m_Start - center );
EDA_ANGLE angle2 = EDA_ANGLE( m_End - center ) - EDA_ANGLE( m_Mid - center );
return angle1.Normalize180() + angle2.Normalize180();
}
EDA_ANGLE PCB_ARC::GetArcAngleStart() const
{
VECTOR2D pos( GetPosition() );
EDA_ANGLE angleStart( m_Start - pos );
return angleStart.Normalize();
}
// Note: used in python tests. Ignore CLion's claim that it's unused....
EDA_ANGLE PCB_ARC::GetArcAngleEnd() const
{
VECTOR2D pos( GetPosition() );
EDA_ANGLE angleEnd( m_End - pos );
return angleEnd.Normalize();
}
bool PCB_ARC::IsDegenerated( int aThreshold ) const
{
// Too small arcs cannot be really handled: arc center (and arc radius)
// cannot be safely computed if the distance between mid and end points
// is too small (a few internal units)
// len of both segments must be < aThreshold to be a very small degenerated arc
return ( GetMid() - GetStart() ).EuclideanNorm() < aThreshold
&& ( GetMid() - GetEnd() ).EuclideanNorm() < aThreshold;
}
bool PCB_TRACK::cmp_tracks::operator() ( const PCB_TRACK* a, const PCB_TRACK* b ) const
{
if( a->GetNetCode() != b->GetNetCode() )
return a->GetNetCode() < b->GetNetCode();
if( a->GetLayer() != b->GetLayer() )
return a->GetLayer() < b->GetLayer();
if( a->Type() != b->Type() )
return a->Type() < b->Type();
if( a->m_Uuid != b->m_Uuid )
return a->m_Uuid < b->m_Uuid;
return a < b;
}
std::shared_ptr<SHAPE> PCB_TRACK::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
int width = m_width;
if( IsSolderMaskLayer( aLayer ) )
width += 2 * GetSolderMaskExpansion();
return std::make_shared<SHAPE_SEGMENT>( m_Start, m_End, width );
}
std::shared_ptr<SHAPE> PCB_VIA::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
if( aFlash == FLASHING::ALWAYS_FLASHED
|| ( aFlash == FLASHING::DEFAULT && FlashLayer( aLayer ) ) )
{
int width = 0;
if( aLayer == UNDEFINED_LAYER )
{
Padstack().ForEachUniqueLayer(
[&]( PCB_LAYER_ID layer )
{
width = std::max( width, GetWidth( layer ) );
} );
width /= 2;
}
else
{
PCB_LAYER_ID cuLayer = m_padStack.EffectiveLayerFor( aLayer );
width = GetWidth( cuLayer ) / 2;
}
return std::make_shared<SHAPE_CIRCLE>( m_Start, width );
}
else
{
return std::make_shared<SHAPE_CIRCLE>( m_Start, GetDrillValue() / 2 );
}
}
std::shared_ptr<SHAPE> PCB_ARC::GetEffectiveShape( PCB_LAYER_ID aLayer, FLASHING aFlash ) const
{
int width = GetWidth();
if( IsSolderMaskLayer( aLayer ) )
width += 2 * GetSolderMaskExpansion();
SHAPE_ARC arc( GetStart(), GetMid(), GetEnd(), width );
if( arc.IsEffectiveLine() )
return std::make_shared<SHAPE_SEGMENT>( GetStart(), GetEnd(), width );
return std::make_shared<SHAPE_ARC>( arc );
}
void PCB_TRACK::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, PCB_LAYER_ID aLayer,
int aClearance, int aError, ERROR_LOC aErrorLoc,
bool ignoreLineWidth ) const
{
wxASSERT_MSG( !ignoreLineWidth, wxT( "IgnoreLineWidth has no meaning for tracks." ) );
switch( Type() )
{
case PCB_VIA_T:
{
int radius = ( static_cast<const PCB_VIA*>( this )->GetWidth( aLayer ) / 2 ) + aClearance;
TransformCircleToPolygon( aBuffer, m_Start, radius, aError, aErrorLoc );
break;
}
case PCB_ARC_T:
{
const PCB_ARC* arc = static_cast<const PCB_ARC*>( this );
int width = m_width + ( 2 * aClearance );
if( IsSolderMaskLayer( aLayer ) )
width += 2 * GetSolderMaskExpansion();
TransformArcToPolygon( aBuffer, arc->GetStart(), arc->GetMid(), arc->GetEnd(), width,
aError, aErrorLoc );
break;
}
default:
{
int width = m_width + ( 2 * aClearance );
if( IsSolderMaskLayer( aLayer ) )
width += 2 * GetSolderMaskExpansion();
TransformOvalToPolygon( aBuffer, m_Start, m_End, width, aError, aErrorLoc );
break;
}
}
}
static struct TRACK_VIA_DESC
{
TRACK_VIA_DESC()
{
// clang-format off: the suggestion is less readable
ENUM_MAP<VIATYPE>::Instance()
.Undefined( VIATYPE::NOT_DEFINED )
.Map( VIATYPE::THROUGH, _HKI( "Through" ) )
.Map( VIATYPE::BLIND_BURIED, _HKI( "Blind/buried" ) )
.Map( VIATYPE::MICROVIA, _HKI( "Micro" ) );
ENUM_MAP<TENTING_MODE>::Instance()
.Undefined( TENTING_MODE::FROM_RULES )
.Map( TENTING_MODE::FROM_RULES, _HKI( "From design rules" ) )
.Map( TENTING_MODE::TENTED, _HKI( "Tented" ) )
.Map( TENTING_MODE::NOT_TENTED, _HKI( "Not tented" ) );
ENUM_MAP<COVERING_MODE>::Instance()
.Undefined( COVERING_MODE::FROM_RULES )
.Map( COVERING_MODE::FROM_RULES, _HKI( "From design rules" ) )
.Map( COVERING_MODE::COVERED, _HKI( "Covered" ) )
.Map( COVERING_MODE::NOT_COVERED, _HKI( "Not covered" ) );
ENUM_MAP<PLUGGING_MODE>::Instance()
.Undefined( PLUGGING_MODE::FROM_RULES )
.Map( PLUGGING_MODE::FROM_RULES, _HKI( "From design rules" ) )
.Map( PLUGGING_MODE::PLUGGED, _HKI( "Plugged" ) )
.Map( PLUGGING_MODE::NOT_PLUGGED, _HKI( "Not plugged" ) );
ENUM_MAP<CAPPING_MODE>::Instance()
.Undefined( CAPPING_MODE::FROM_RULES )
.Map( CAPPING_MODE::FROM_RULES, _HKI( "From design rules" ) )
.Map( CAPPING_MODE::CAPPED, _HKI( "Capped" ) )
.Map( CAPPING_MODE::NOT_CAPPED, _HKI( "Not capped" ) );
ENUM_MAP<FILLING_MODE>::Instance()
.Undefined( FILLING_MODE::FROM_RULES )
.Map( FILLING_MODE::FROM_RULES, _HKI( "From design rules" ) )
.Map( FILLING_MODE::FILLED, _HKI( "Filled" ) )
.Map( FILLING_MODE::NOT_FILLED, _HKI( "Not filled" ) );
// clang-format on: the suggestion is less readable
ENUM_MAP<PCB_LAYER_ID>& layerEnum = ENUM_MAP<PCB_LAYER_ID>::Instance();
if( layerEnum.Choices().GetCount() == 0 )
{
layerEnum.Undefined( UNDEFINED_LAYER );
for( PCB_LAYER_ID layer : LSET::AllLayersMask().Seq() )
layerEnum.Map( layer, LSET::Name( layer ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
// Track
REGISTER_TYPE( PCB_TRACK );
propMgr.InheritsAfter( TYPE_HASH( PCB_TRACK ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "Width" ),
&PCB_TRACK::SetWidth, &PCB_TRACK::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position X" ),
new PROPERTY<PCB_TRACK, int>( _HKI( "Start X" ),
&PCB_TRACK::SetStartX, &PCB_TRACK::GetStartX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD) );
propMgr.ReplaceProperty( TYPE_HASH( BOARD_ITEM ), _HKI( "Position Y" ),
new PROPERTY<PCB_TRACK, int>( _HKI( "Start Y" ),
&PCB_TRACK::SetStartY, &PCB_TRACK::GetStartY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD ) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End X" ),
&PCB_TRACK::SetEndX, &PCB_TRACK::GetEndX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD) );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, int>( _HKI( "End Y" ),
&PCB_TRACK::SetEndY, &PCB_TRACK::GetEndY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD) );
const wxString groupTechLayers = _HKI( "Technical Layers" );
auto isExternalLayerTrack =
[]( INSPECTABLE* aItem )
{
if( auto track = dynamic_cast<PCB_TRACK*>( aItem ) )
return track->GetLayer() == F_Cu || track->GetLayer() == B_Cu;
return false;
};
propMgr.AddProperty( new PROPERTY<PCB_TRACK, bool>( _HKI( "Soldermask" ),
&PCB_TRACK::SetHasSolderMask, &PCB_TRACK::HasSolderMask ), groupTechLayers )
.SetAvailableFunc( isExternalLayerTrack );
propMgr.AddProperty( new PROPERTY<PCB_TRACK, std::optional<int>>( _HKI( "Soldermask Margin Override" ),
&PCB_TRACK::SetLocalSolderMaskMargin, &PCB_TRACK::GetLocalSolderMaskMargin,
PROPERTY_DISPLAY::PT_SIZE ), groupTechLayers )
.SetAvailableFunc( isExternalLayerTrack );
// Arc
REGISTER_TYPE( PCB_ARC );
propMgr.InheritsAfter( TYPE_HASH( PCB_ARC ), TYPE_HASH( PCB_TRACK ) );
// Via
REGISTER_TYPE( PCB_VIA );
propMgr.InheritsAfter( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
// TODO test drill, use getdrillvalue?
const wxString groupVia = _HKI( "Via Properties" );
propMgr.Mask( TYPE_HASH( PCB_VIA ), TYPE_HASH( BOARD_CONNECTED_ITEM ), _HKI( "Layer" ) );
// clang-format off: the suggestion is less readable
propMgr.AddProperty( new PROPERTY<PCB_VIA, int>( _HKI( "Diameter" ),
&PCB_VIA::SetFrontWidth, &PCB_VIA::GetFrontWidth, PROPERTY_DISPLAY::PT_SIZE ), groupVia );
propMgr.AddProperty( new PROPERTY<PCB_VIA, int>( _HKI( "Hole" ),
&PCB_VIA::SetDrill, &PCB_VIA::GetDrillValue, PROPERTY_DISPLAY::PT_SIZE ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID>( _HKI( "Layer Top" ),
&PCB_VIA::SetLayer, &PCB_VIA::GetLayer ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PCB_LAYER_ID>( _HKI( "Layer Bottom" ),
&PCB_VIA::SetBottomLayer, &PCB_VIA::BottomLayer ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, VIATYPE>( _HKI( "Via Type" ),
&PCB_VIA::SetViaType, &PCB_VIA::GetViaType ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, TENTING_MODE>( _HKI( "Front tenting" ),
&PCB_VIA::SetFrontTentingMode, &PCB_VIA::GetFrontTentingMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, TENTING_MODE>( _HKI( "Back tenting" ),
&PCB_VIA::SetBackTentingMode, &PCB_VIA::GetBackTentingMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, COVERING_MODE>( _HKI( "Front covering" ),
&PCB_VIA::SetFrontCoveringMode, &PCB_VIA::GetFrontCoveringMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, COVERING_MODE>( _HKI( "Back covering" ),
&PCB_VIA::SetBackCoveringMode, &PCB_VIA::GetBackCoveringMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PLUGGING_MODE>( _HKI( "Front plugging" ),
&PCB_VIA::SetFrontPluggingMode, &PCB_VIA::GetFrontPluggingMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, PLUGGING_MODE>( _HKI( "Back plugging" ),
&PCB_VIA::SetBackPluggingMode, &PCB_VIA::GetBackPluggingMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, CAPPING_MODE>( _HKI( "Capping" ),
&PCB_VIA::SetCappingMode, &PCB_VIA::GetCappingMode ), groupVia );
propMgr.AddProperty( new PROPERTY_ENUM<PCB_VIA, FILLING_MODE>( _HKI( "Filling" ),
&PCB_VIA::SetFillingMode, &PCB_VIA::GetFillingMode ), groupVia );
// clang-format on: the suggestion is less readable
}
} _TRACK_VIA_DESC;
ENUM_TO_WXANY( VIATYPE );
ENUM_TO_WXANY( TENTING_MODE );
ENUM_TO_WXANY( COVERING_MODE );
ENUM_TO_WXANY( PLUGGING_MODE );
ENUM_TO_WXANY( CAPPING_MODE );
ENUM_TO_WXANY( FILLING_MODE );