USB2SPDIF/reference/airspy_dma/firmware-master/common/w25q80bv.c

309 lines
8.2 KiB
C

/*
* Copyright 2013 Michael Ossmann
* Copyright 2013 Benjamin Vernoux
*
* This file is part of AirSpy (based on HackRF project).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* This is a rudimentary driver for the W25Q80BV SPI Flash IC using the
* LPC43xx's SSP0 peripheral (not quad SPIFI). The only goal here is to allow
* programming the flash.
*/
#include <stdint.h>
#include "w25q80bv.h"
#include "airspy_core.h"
#include <libopencm3/lpc43xx/ssp.h>
#include <libopencm3/lpc43xx/scu.h>
#include <libopencm3/lpc43xx/gpio.h>
#include <libopencm3/lpc43xx/rgu.h>
uint8_t device_id;
/*
* Set up pins for GPIO and SPI control, configure SSP0 peripheral for SPI.
* SSP0_SSEL is controlled by GPIO in order to handle various transfer lengths.
*/
void w25q80bv_setup(void)
{
const uint8_t serial_clock_rate = 2;
const uint8_t clock_prescale_rate = 2;
/* Reset SPIFI peripheral before to Erase/Write SPIFI memory through SPI */
RESET_CTRL1 = RESET_CTRL1_SPIFI_RST;
/* Init SPIFI GPIO to Normal GPIO */
scu_pinmux(P3_3, (SCU_SSP_IO | SCU_CONF_FUNCTION2)); // P3_3 SPIFI_SCK => SSP0_SCK
scu_pinmux(P3_4, (SCU_GPIO_FAST | SCU_CONF_FUNCTION0)); // P3_4 SPIFI SPIFI_SIO3 IO3 => GPIO1[14]
scu_pinmux(P3_5, (SCU_GPIO_FAST | SCU_CONF_FUNCTION0)); // P3_5 SPIFI SPIFI_SIO2 IO2 => GPIO1[15]
scu_pinmux(P3_6, (SCU_GPIO_FAST | SCU_CONF_FUNCTION0)); // P3_6 SPIFI SPIFI_MISO IO1 => GPIO0[6]
scu_pinmux(P3_7, (SCU_GPIO_FAST | SCU_CONF_FUNCTION4)); // P3_7 SPIFI SPIFI_MOSI IO0 => GPIO5[10]
scu_pinmux(P3_8, (SCU_GPIO_FAST | SCU_CONF_FUNCTION4)); // P3_8 SPIFI SPIFI_CS => GPIO5[11]
/* configure SSP pins */
scu_pinmux(SCU_SSP0_MISO, (SCU_SSP_IO | SCU_CONF_FUNCTION5));
scu_pinmux(SCU_SSP0_MOSI, (SCU_SSP_IO | SCU_CONF_FUNCTION5));
scu_pinmux(SCU_SSP0_SCK, (SCU_SSP_IO | SCU_CONF_FUNCTION2));
/* configure GPIO pins */
scu_pinmux(SCU_FLASH_HOLD, SCU_GPIO_FAST);
scu_pinmux(SCU_FLASH_WP, SCU_GPIO_FAST);
scu_pinmux(SCU_SSP0_SSEL, (SCU_GPIO_FAST | SCU_CONF_FUNCTION4));
/* drive SSEL, HOLD, and WP pins high */
gpio_set(PORT_FLASH, (PIN_FLASH_HOLD | PIN_FLASH_WP));
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
/* Set GPIO pins as outputs. */
GPIO1_DIR |= (PIN_FLASH_HOLD | PIN_FLASH_WP);
GPIO5_DIR |= PIN_SSP0_SSEL;
/* initialize SSP0 */
ssp_init(SSP0_NUM,
SSP_DATA_8BITS,
SSP_FRAME_SPI,
SSP_CPOL_0_CPHA_0,
serial_clock_rate,
clock_prescale_rate,
SSP_MODE_NORMAL,
SSP_MASTER,
SSP_SLAVE_OUT_ENABLE);
device_id = 0;
while(1)
{
if(device_id == W25Q80BV_DEVICE_ID_RES)
break;
if(device_id == S25FL032P_DEVICE_ID_RES)
break;
device_id = w25q80bv_get_device_id();
}
}
uint8_t w25q80bv_get_status(void)
{
uint8_t value;
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_READ_STATUS1);
value = ssp_transfer(SSP0_NUM, 0xFF);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
return value;
}
/* Release power down / Device ID */
uint8_t w25q80bv_get_device_id(void)
{
uint8_t value;
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_DEVICE_ID);
/* Read 3 dummy bytes */
value = ssp_transfer(SSP0_NUM, 0xFF);
value = ssp_transfer(SSP0_NUM, 0xFF);
value = ssp_transfer(SSP0_NUM, 0xFF);
/* Read Device ID shall return 0x13 for W25Q80BV */
value = ssp_transfer(SSP0_NUM, 0xFF);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
return value;
}
void w25q80bv_get_unique_id(w25q80bv_unique_id_t* unique_id)
{
int i;
uint8_t value;
uint32_t addr;
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
if(device_id == W25Q80BV_DEVICE_ID_RES)
{
ssp_transfer(SSP0_NUM, W25Q80BV_UNIQUE_ID);
/* Read 4 dummy bytes */
for(i=0; i<4; i++)
value = ssp_transfer(SSP0_NUM, 0xFF);
/* Read Unique ID 64bits (8*8) */
for(i=0; i<8; i++)
{
value = ssp_transfer(SSP0_NUM, 0xFF);
unique_id->id_8b[i] = value;
}
}else if(device_id == S25FL032P_DEVICE_ID_RES)
{
addr = S25FL032P_OTP_SN1_ADDR;
ssp_transfer(SSP0_NUM, S25FL032P_READ_OTP);
ssp_transfer(SSP0_NUM, (addr & 0xFF0000) >> 16);
ssp_transfer(SSP0_NUM, (addr & 0xFF00) >> 8);
ssp_transfer(SSP0_NUM, addr & 0xFF);
ssp_transfer(SSP0_NUM, 0xFF); /* Dummy byte */
/* Read Unique ID 64bits (8*8) */
for(i=0; i<8; i++)
{
value = ssp_transfer(SSP0_NUM, 0xFF);
unique_id->id_8b[i] = value;
}
}
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
}
void w25q80bv_wait_while_busy(void)
{
while (w25q80bv_get_status() & W25Q80BV_STATUS_BUSY);
}
void w25q80bv_write_enable(void)
{
w25q80bv_wait_while_busy();
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_WRITE_ENABLE);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
}
void w25q80bv_chip_erase(void)
{
device_id = 0;
while(1)
{
if(device_id == W25Q80BV_DEVICE_ID_RES)
break;
if(device_id == S25FL032P_DEVICE_ID_RES)
break;
device_id = w25q80bv_get_device_id();
}
w25q80bv_write_enable();
w25q80bv_wait_while_busy();
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_CHIP_ERASE);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
}
/* 64KB sector erase */
void w25q80bv_sector_erase(const uint32_t addr)
{
device_id = 0;
while(1)
{
if(device_id == W25Q80BV_DEVICE_ID_RES)
break;
if(device_id == S25FL032P_DEVICE_ID_RES)
break;
device_id = w25q80bv_get_device_id();
}
w25q80bv_write_enable();
w25q80bv_wait_while_busy();
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_SECTOR_ERASE);
ssp_transfer(SSP0_NUM, (addr & 0xFF0000) >> 16);
ssp_transfer(SSP0_NUM, (addr & 0xFF00) >> 8);
ssp_transfer(SSP0_NUM, addr & 0xFF);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
}
/* write up a 256 byte page or partial page */
void w25q80bv_page_program(const uint32_t addr, const uint16_t len, const uint8_t* data)
{
int i;
/* do nothing if asked to write beyond a page boundary */
if (((addr & 0xFF) + len) > W25Q80BV_PAGE_LEN)
return;
/* do nothing if we would overflow the flash */
if (addr > (W25Q80BV_NUM_BYTES - len))
return;
w25q80bv_write_enable();
w25q80bv_wait_while_busy();
gpio_clear(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
ssp_transfer(SSP0_NUM, W25Q80BV_PAGE_PROGRAM);
ssp_transfer(SSP0_NUM, (addr & 0xFF0000) >> 16);
ssp_transfer(SSP0_NUM, (addr & 0xFF00) >> 8);
ssp_transfer(SSP0_NUM, addr & 0xFF);
for (i = 0; i < len; i++)
ssp_transfer(SSP0_NUM, data[i]);
gpio_set(PORT_SSP0_SSEL, PIN_SSP0_SSEL);
}
/* write an arbitrary number of bytes */
void w25q80bv_program(uint32_t addr, uint32_t len, const uint8_t* data)
{
uint16_t first_block_len;
uint8_t device_id;
device_id = 0;
while(1)
{
if(device_id == W25Q80BV_DEVICE_ID_RES)
break;
if(device_id == S25FL032P_DEVICE_ID_RES)
break;
device_id = w25q80bv_get_device_id();
}
/* do nothing if we would overflow the flash */
if ((len > W25Q80BV_NUM_BYTES) || (addr > W25Q80BV_NUM_BYTES)
|| ((addr + len) > W25Q80BV_NUM_BYTES))
return;
/* handle start not at page boundary */
first_block_len = W25Q80BV_PAGE_LEN - (addr % W25Q80BV_PAGE_LEN);
if (len < first_block_len)
first_block_len = len;
if (first_block_len) {
w25q80bv_page_program(addr, first_block_len, data);
addr += first_block_len;
data += first_block_len;
len -= first_block_len;
}
/* one page at a time on boundaries */
while (len >= W25Q80BV_PAGE_LEN) {
w25q80bv_page_program(addr, W25Q80BV_PAGE_LEN, data);
addr += W25Q80BV_PAGE_LEN;
data += W25Q80BV_PAGE_LEN;
len -= W25Q80BV_PAGE_LEN;
}
/* handle end not at page boundary */
if (len) {
w25q80bv_page_program(addr, len, data);
}
}