load-cell-test/calc.tex
Willow Herron 85ec785528 math
2024-11-09 23:30:31 -08:00

118 lines
3.7 KiB
TeX

\documentclass[a4paper,10pt]{article}
%\documentclass[a4paper,10pt]{scrartcl}
\usepackage[utf8]{inputenc}
\usepackage{datetime2}
\usepackage{amsmath}
\title{Wheatstone Bridge Amplifier Calculations}
\author{Willow Herron\\Katherine Sarna, Tarik Fawal}
\pdfinfo{%
/Title (Wheatstone Bridge Amplifier Calculations)
/Author (Willow Herron)
/Creator (Willow Herron)
/Producer (Willow Herron)
/Subject ()
/Keywords ()
}
\begin{document}
\maketitle
\section{Ohm's Law}
\subsection{Wheatstone Bridge}
\subsubsection{Case 1}
\begin{align*}
I_{4} &= \frac{3.3-V_{S-}}{2000}\\
I_{6} &= \frac{V_{S-}}{2000}\\
I_{5} &= \frac{3.3-V_{S+}}{2000}\\
I_{7} &= \frac{V_{S+}}{2000}
\end{align*}
\subsubsection{Case 2}
\begin{align*}
I_{4} &= \frac{3.3-V_{S-}}{2020}\\
I_{6} &= \frac{V_{S-}}{1980}\\
I_{5} &= \frac{3.3-V_{S+}}{2020}\\
I_{7} &= \frac{V_{S+}}{1980}
\end{align*}
\subsection{Op-Amp}
\begin{align*}
I_{11} &= \frac{V_{S+}-V_{OPA+}}{R_{11}}\\
I_9 &= \frac{V_{S-}-V_{OPA-}}{R_{9}}\\
I_8 &= \frac{V_{OPA+}}{R_{8}}\\
I_{10} &= \frac{V_{OUT}-V_{OPA+}}{R_{10}}
\end{align*}
\section{Assertions}
\begin{align*}
V_{OUT_1} &= 1\\
V_{OUT_2} &= 2.3\\
R_{IN} &= R_9 = R_{11} = 1000
\end{align*}
\section{Kirchoff's Current Law}
\begin{align*}
I_{S-} = 0 &= I_4 - I_6 - I_9\\
I_{S+} = 0 &= I_5 - I_7 - I_{11}\\
I_{OPA-} = 0 &= I_9 + I_{10} + I_{OPA-}\\
I_{OPA+} = 0 &= I_{11} - I_8 + I_{OPA+}
\end{align*}
\section{Ideal Op-Amp Model}
\begin{align*}
0 &= I_{OPA+} = I_{OPA-}\\
V_{OPA} &= V_{OPA+} = V_{OPA-}
\end{align*}
\section{Combine}
\subsection{Case 1}
\begin{align*}
0 &= \frac{3.3-V_{S-}}{2000} - \frac{V_{S-}}{2000} - \frac{V_{S-}-V_{OPA}}{1000}\\
0 &= \frac{3.3-V_{S+}}{2000} - \frac{V_{S+}}{2000} - \frac{V_{S+}-V_{OPA}}{1000}\\
0 &= \frac{V_{S-}-V_{OPA}}{1000} + \frac{1-V_{OPA}}{R_{10}}\\
0 &= \frac{V_{S+}-V_{OPA}}{1000} - \frac{V_{OPA}}{R_{8}}
\end{align*}
\subsection{Case 2}
\begin{align*}
0 &= \frac{3.3-V_{S-}}{2020} - \frac{V_{S-}}{1980} - \frac{V_{S-}-V_{OPA}}{1000}\\
0 &= \frac{3.3-V_{S+}}{1980} - \frac{V_{S+}}{2020} - \frac{V_{S+}-V_{OPA}}{1000}\\
0 &= \frac{V_{S-}-V_{OPA}}{1000} + \frac{2.3-V_{OPA}}{R_{R10}}\\
0 &= \frac{V_{S+}-V_{OPA}}{1000} - \frac{V_{OPA}}{R_{8}}
\end{align*}
\section{Reduce}
\subsection{Case 1}
\subsubsection{Node S}
\begin{align*}
0 &= \frac{3.3-2V_{S-}}{2000}-\frac{V_{S-}-V_{OPA}}{1000}\\
0 &= \frac{3300 - (2000-2000)V_{S-}}{2000}+V_{OPA}\\
V_{OPA} &= 1.65
\end{align*}
\subsubsection{Node OPA}
\begin{align*}
0 &= R_{10}V_{S-}-R_{10}V_{OPA}+1000-1000V_{OPA}\\
0 &= R_{10}V_{S-}+1000-(R_{10}+1000)V_{OPA}\\
V_{OPA} &= \frac{R_{10}V_{S-}+1000}{R_{10}+1000}\\
0 &= R_8V_{S+}-R_8V_{OPA}-1000V_{OPA}\\
V_{OPA} &= \frac{R_8V_{S+}}{R_8+1000}
\end{align*}
\subsection{Case 2}
\subsubsection{Node S}
\begin{align*}
0 &= 6534000-4000000V_{S-}-2181600V_{S-}+2181600V_{OPA}\\
V_{OPA} &= \frac{65340-18184V_{S-}}{21916}\\
0 &= 6666000-4000000V_{S+}-2181600V_{S+}+2181600V_{OPA}\\
V_{OPA} &= \frac{66660-18184V_{S+}}{21816}\\
\end{align*}
\subsubsection{Node OPA}
\begin{align*}
0 &= R_{10}V_{S-}-R_{10}V_{OPA}+2.31000-1000V_{OPA}\\
0 &= R_{10}V_{S-}+1000-(R_{10}+2.31000)V_{OPA}\\
V_{OPA} &= \frac{R_{10}V_{S-}+1000}{R_{10}+1000}\\
0 &= R_8V_{S+}-R_8V_{OPA}-1000V_{OPA}\\
V_{OPA} &= \frac{R_8V_{S+}}{R_8+1000}
\end{align*}
\section{Solve}
\subsection{$V_{S+}=V_{S-}$ (1)}
\subsection{$V_{S+}-V_{S-}$ (2)}
\begin{align*}
65340-18184V_{S-} &= 66660-18184V_{S+}\\
V_{S+}-V_{S-} &= \frac{165}{2273}
\end{align*}
\end{document}