7
mirror of https://gitlab.com/kicad/code/kicad.git synced 2024-11-22 16:35:01 +00:00
kicad/3d-viewer/3d_rendering/raytracing/material.h
Jeff Young 6c0110ecd3 Naming conventions.
There's nothing "legacy" about the OpenGL 3D renderer.
2021-10-21 14:30:03 +01:00

395 lines
11 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef MATERIAL_H
#define MATERIAL_H
#include "ray.h"
#include "hitinfo.h"
#include "PerlinNoise.h"
/**
* A base class that can be used to derive procedurally generated materials.
*/
class MATERIAL_GENERATOR
{
public:
MATERIAL_GENERATOR();
virtual ~MATERIAL_GENERATOR()
{
}
/**
* Generate a 3D vector based on the ray and hit information depending on the implementation.
*
* @param aRay the camera ray that hits the object
* @param aHitInfo the hit information
* @return the result of the procedural
*/
virtual SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const = 0;
};
class BOARD_NORMAL : public MATERIAL_GENERATOR
{
public:
BOARD_NORMAL() : MATERIAL_GENERATOR() { m_scale = 1.0f; }
BOARD_NORMAL( float aScale );
virtual ~BOARD_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the copper normals.
*/
class COPPER_NORMAL : public MATERIAL_GENERATOR
{
public:
COPPER_NORMAL() : MATERIAL_GENERATOR()
{
m_board_normal_generator = nullptr;
m_scale = 1.0f;
}
COPPER_NORMAL( float aScale, const MATERIAL_GENERATOR* aBoardNormalGenerator );
virtual ~COPPER_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
const MATERIAL_GENERATOR* m_board_normal_generator;
float m_scale;
};
class PLATED_COPPER_NORMAL : public MATERIAL_GENERATOR
{
public:
PLATED_COPPER_NORMAL() : MATERIAL_GENERATOR()
{
m_scale = 1.0f;
}
PLATED_COPPER_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
virtual ~PLATED_COPPER_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the solder mask.
*/
class SOLDER_MASK_NORMAL : public MATERIAL_GENERATOR
{
public:
SOLDER_MASK_NORMAL() : MATERIAL_GENERATOR() { m_copper_normal_generator = nullptr; }
SOLDER_MASK_NORMAL( const MATERIAL_GENERATOR* aCopperNormalGenerator );
virtual ~SOLDER_MASK_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
const MATERIAL_GENERATOR* m_copper_normal_generator;
};
/**
* Procedural generation of the plastic normals.
*/
class PLASTIC_NORMAL : public MATERIAL_GENERATOR
{
public:
PLASTIC_NORMAL() : MATERIAL_GENERATOR()
{
m_scale = 1.0f;
}
PLASTIC_NORMAL( float aScale );
virtual ~PLASTIC_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the shiny plastic normals.
*/
class PLASTIC_SHINE_NORMAL : public MATERIAL_GENERATOR
{
public:
PLASTIC_SHINE_NORMAL() : MATERIAL_GENERATOR()
{
m_scale = 1.0f;
}
PLASTIC_SHINE_NORMAL( float aScale );
virtual ~PLASTIC_SHINE_NORMAL()
{
}
// Imported from MATERIAL_GENERATOR
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the shiny brushed metal.
*/
class BRUSHED_METAL_NORMAL : public MATERIAL_GENERATOR
{
public:
BRUSHED_METAL_NORMAL() : MATERIAL_GENERATOR()
{
m_scale = 1.0f;
}
BRUSHED_METAL_NORMAL( float aScale );
virtual ~BRUSHED_METAL_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
class SILK_SCREEN_NORMAL : public MATERIAL_GENERATOR
{
public:
SILK_SCREEN_NORMAL() : MATERIAL_GENERATOR()
{
m_scale = 1.0f;
}
SILK_SCREEN_NORMAL( float aScale );
virtual ~SILK_SCREEN_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Base material class that can be used to derive other material implementations.
*/
class MATERIAL
{
public:
static void SetDefaultRefractionRayCount( unsigned int aCount )
{
m_defaultRefractionRayCount = aCount;
}
static void SetDefaultReflectionRayCount( unsigned int aCount )
{
m_defaultReflectionRayCount = aCount;
}
static void SetDefaultRefractionRecursionCount( unsigned int aCount )
{
m_defaultRefractionRecursionCount = aCount;
}
static void SetDefaultReflectionRecursionCount( unsigned int aCount )
{
m_defaultFeflectionRecursionCount = aCount;
}
MATERIAL();
MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular,
float aShinness, float aTransparency, float aReflection );
virtual ~MATERIAL() {}
const SFVEC3F& GetAmbientColor() const { return m_ambientColor; }
const SFVEC3F& GetEmissiveColor() const { return m_emissiveColor; }
const SFVEC3F& GetSpecularColor() const { return m_specularColor; }
float GetReflectivity() const { return m_reflectivity; }
float GetTransparency() const { return m_transparency; }
float GetReflection() const { return m_reflection; }
float GetAbsorvance() const { return m_absorbance; }
unsigned int GetRefractionRayCount() const { return m_refractionRayCount; }
unsigned int GetReflectionRayCount() const { return m_reflectionRayCount; }
unsigned int GetReflectionRecursionCount() const { return m_reflectionRecursionCount; }
unsigned int GetRefractionRecursionCount() const { return m_refractionRecursionCount; }
void SetAbsorvance( float aAbsorvanceFactor ) { m_absorbance = aAbsorvanceFactor; }
void SetRefractionRayCount( unsigned int aCount )
{
m_refractionRayCount = aCount;
}
void SetReflectionRayCount( unsigned int aCount )
{
m_reflectionRayCount = aCount;
}
void SetReflectionRecursionCount( unsigned int aCount )
{
m_reflectionRecursionCount = aCount;
}
void SetRefractionRecursionCount( unsigned int aCount )
{
m_refractionRecursionCount = aCount;
}
/**
* Set if the material can receive shadows.
*
* @param aCastShadows true yes it can, false not it cannot
*/
void SetCastShadows( bool aCastShadows ) { m_castShadows = aCastShadows; }
bool GetCastShadows() const { return m_castShadows; }
/**
* Shade an intersection point.
*
* @param aRay the camera ray that hits the object
* @param aHitInfo the hit information
* @param NdotL the dot product between Normal and Light
* @param aDiffuseObjColor diffuse object color
* @param aDirToLight a vector of the incident light direction
* @param aLightColor the light color
* @param aShadowAttenuationFactor 0.0f total in shadow, 1.0f completely not in shadow
* @return the resultant color
*/
virtual SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL,
const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight,
const SFVEC3F& aLightColor,
float aShadowAttenuationFactor ) const = 0;
void SetGenerator( const MATERIAL_GENERATOR* aGenerator )
{
m_generator = aGenerator;
}
const MATERIAL_GENERATOR* GetGenerator() const { return m_generator; }
void Generate( SFVEC3F& aNormal, const RAY& aRay, const HITINFO& aHitInfo ) const;
protected:
SFVEC3F m_ambientColor;
// NOTE: we will not use diffuse color material here,
// because it will be stored in object, since there are objects (i.e: triangles)
// that can have per vertex color
SFVEC3F m_emissiveColor;
SFVEC3F m_specularColor;
float m_reflectivity;
///< 1.0 is completely transparent, 0.0 completely opaque.
float m_transparency;
float m_absorbance; ///< absorbance factor for the transparent material.
float m_reflection; ///< 1.0 completely reflective, 0.0 no reflective.
bool m_castShadows; ///< true if this object will block the light.
///< Number of rays that will be interpolated for this material if it is transparent.
unsigned int m_refractionRayCount;
///< Number of rays that will be interpolated for this material if it is reflective.
unsigned int m_reflectionRayCount;
///< Number of levels it allows for refraction recursiveness.
unsigned int m_refractionRecursionCount;
///< Number of levels it allows for reflection recursiveness.
unsigned int m_reflectionRecursionCount;
const MATERIAL_GENERATOR* m_generator;
private:
static int m_defaultRefractionRayCount;
static int m_defaultReflectionRayCount;
static int m_defaultRefractionRecursionCount;
static int m_defaultFeflectionRecursionCount;
};
/// Blinn Phong based material
/// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
class BLINN_PHONG_MATERIAL : public MATERIAL
{
public:
BLINN_PHONG_MATERIAL() : MATERIAL() {}
BLINN_PHONG_MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive,
const SFVEC3F& aSpecular, float aShinness, float aTransparency,
float aReflection ) :
MATERIAL( aAmbient, aEmissive, aSpecular, aShinness, aTransparency, aReflection ) {}
// Imported from MATERIAL
SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL,
const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight,
const SFVEC3F& aLightColor, float aShadowAttenuationFactor ) const override;
};
#endif // MATERIAL_H