V2 updates #6

Open
AllSpiceAlice wants to merge 4 commits from develop into main

Resolved Issues

Closes #5 Triple check SPI header pinouts
Closes #4 Update silkscreen footprint for placement clarity
Closes #3 Fix mounting hole locations
Closes #2 Fix vias underneath U1000

Description

V2 is fixing errors found in the prototype build for pilot production

Design Review Checklist

Process

  • Schematic and PCB file names follow standard
  • Export necessary review files (3D model, BOM, etc.)
  • Update relevant system architecture documents
  • Update project README page
  • Simulations uploaded and outputs explained

System

  • Power
    • Sufficient power supplied from upstream source
    • Supply rated for necessary country specifications
    • Estimated total worst-case power supply draw
  • Connectors
    • I/Os are specified
    • Sufficient Current and Voltage rating
    • Mating connectors have matching pinout
    • Same contact material specified for mating connectors
  • Testing
    • Test procedure written
  • Environmental
    • Specified min/max operating temperature
    • Specified min/max storage temperature
    • Specified min/max humidity
  • ROHS compliance requirement review

Components

  • Unpopulated components are denoted DNI
  • Components meet environmental specifications
  • All components have quantity, reference designator and description
  • Suggested and alternate manufacturers listed
  • Price and stock checked for each component
  • Component derating
    • Voltage
    • Current
    • Power at worst-case operating temperature
    • Temperature at worst-case power

Schematics

  • Document
    • Dot on each connection
    • No four-point connections
    • Title block completed for each sheet
    • All components have reference designators and values
    • Multi-part components don't have unplaced symbols
    • Page title present and consistent on all pages if not in title block
    • Symbols identify open collector/drain pins and internal pulled up/down pins
    • Pin names and attributes on symbols with multi-function pins should match actual design usage (I/O/Bi, Name)
    • Components follow preferred reference designator pattern
  • External I/O
    • Filtered for EMI
    • Protected against electrostatic discharge (ESD)
    • Unused inputs terminated
  • Microcontrollers / ICs
    • Predictable or controlled power-up state
      • Reset filtered
    • Sufficient bypass capacitance
    • Oscillators checked for reliable startup
    • Pullups on open-collector pins
    • Logic-low and logic-high voltage levels checked
    • No-connect pins labeled NC
    • Clock lines with series termination and parallel termination component locations present even if not populated; zero ohm resistor for series, unpopulated parts for parallel termination
    • Check for input voltages applied with power off and CMOS latchup possibilities
    • Check the data sheet errata and apnotes for weird IC behaviors
  • Busses
    • UART/USART TX->RX and RX<-TX
    • I2C SDA and SCL pullup with appropriate value per capacitance
    • Setup, hold, access times for data and address busses
  • Analog
    • Sufficient power rails for analog circuits
    • Amplifiers checked for stability
    • Consider signal rate-of-rise and fall for noise radiation
  • General
    • Sufficient bulk capacitance calculated
    • Polarized components checked
    • Electrolytic/tantalum capacitors checked for no reverse voltage
    • Electrolytic/tantalum capacitors temperature/voltage derating sufficient for MTBF
    • Sufficient capacitance on low dropout voltage regulators
    • Sufficient time delays and slew rates for comparators
    • Sufficient common mode input voltage rating on opamps
    • Check pin numbers of all custom-generated parts
    • Check reverse base-emitter current/voltage on bipolar transistors
    • Power nets use preferred and consistent naming (ex. no 3.3V vs +3.3V)
    • Debug resources added by design (leds, serial ports, etc.) even if unpopulated by default

PCB

  • Manufacturing
    • PCB manufacturing requirements noted on fab layer
      • Plating specified
        • Plating material
        • Plating thickness
      • Layer stack-up specified
      • Minimum trace/space specified
      • Minimum hole size specified
      • PCB color specified
      • Silkscreen color specified
      • Controlled impedance specified
      • Blind or buried vias specified
      • Panelization specified
        • External routing specified (ex. v-groove vs route)
      • Drill table generated
      • All specifications exceed manufacturing tolerance
    • Space between power planes minimized
    • Solder paste openings proper size
    • Fiducials placed if necessary
  • Footprints
    • Pin 1 marked in a consistent manner
    • Component polarity marked
      • Diodes, LEDs
      • Electrolytic, tantalum capacitors
      • Keyed components like connectors
    • Footprint dimensions cross-checked with datasheet recommendation
    • Sufficient thermal pads on high-power components or nets
  • Placement
    • Jumpers accessible
    • Debug connectors accessible
    • Filter resistors closer to source
    • Termination resistors close to target
    • Small loop path on switch-mode power supplies
    • Bypass capacitors close to ICs
    • Bypass capacitors close to connectors
    • Drivers / receivers close to connectors
    • SMT components on top side, through-hole components on bottom side if possible
  • Clearance
    • Keep-out areas honored
      • Around mounting holes
      • For programming tools
      • For assembly tools (wrenches, screwdrivers etc.)
      • For connectors
    • Trace-to-trace clearance based upon voltage rating
    • Component size based upon voltage rating
    • Keep components away from board edge
  • Mechanical
    • CAD file uploaded
    • Clearance above connectors
    • Clearance below through-hole components
    • Enough space for the minimum bending radius of the wire harness
    • Mounting holes electrically isolated if necessary
      • Mounting holes have via stitching
    • Hole diameters leave margin for plating
    • Board outline defined
    • Mechanical enclosure defined
    • Internal corners are rounded and can be milled
  • Electrical
    • All traces are routed
    • Analog and digital commons joined at only one point
    • ERC passes
    • Isolation barriers are large enough
  • Signal integrity
    • Gaps in ground planes checked and minimized
    • High-speed signals avoid gaps in ground planes
    • Stubs minimized for high-speed signals
    • Differential pair spacing based upon impedance matching
    • Transmission lines terminated with an appropriate impedance
    • Crystal connections kept short
    • Guard ring around crystals
    • Traces avoided under sensitive components
    • Traces avoided under noisy components
    • Via fencing of sensitive RF transission lines done with the proper via spacing (< 1/20 lambda)
    • Option for a shielding can over sensitive circuitry e.g. RF?
  • Copper pour
    • All planes have been poured
    • Planes and pours checked for high-impedance paths
    • No pour between adjacent pins on ICs
  • Traces
    • Trace-pad connections sufficiently obtuse (angle 90 deg or more)
    • Trace widths sufficient for the current draw and max heating
    • No connections between adjacent pins on ICs
    • Vias for internal power traces sufficiently large
    • Mitered bends or soft curves (r > 3 trace width) for impedance sensitive traces
  • Thermal
    • Temperature sensitive components placed away from hot components
    • Thermal vias in thermal pads
  • Testing
    • Test points on PCBs for critical circuits, hard to reach nets
    • Ground connection points close to analog test points
  • Silk screen
    • Notes and documentation
      • Updated revision number
      • Updated date
      • Blank space designated for a serial / assembly number
    • No silk screen over pads / vias
    • Text is readable from at most two directions
    • Silk screen size / font will legible after printing
    • Connector pin-outs labeled
    • Fuse size and type marked on PCB
    • Functional groups marked
    • Functionality labeled
      • Test points
      • LEDs
      • Buttons
      • Connectors/terminals
      • Jumpers/fuses
## Resolved Issues Closes #5 Triple check SPI header pinouts Closes #4 Update silkscreen footprint for placement clarity Closes #3 Fix mounting hole locations Closes #2 Fix vias underneath U1000 ## Description V2 is fixing errors found in the prototype build for pilot production ## Design Review Checklist ### Process - [ ] Schematic and PCB file names follow standard - [ ] Export necessary review files (3D model, BOM, etc.) - [ ] Update relevant system architecture documents - [ ] Update project README page - [ ] Simulations uploaded and outputs explained ### System - [ ] Power - [ ] Sufficient power supplied from upstream source - [ ] Supply rated for necessary country specifications - [ ] Estimated total worst-case power supply draw - [ ] Connectors - [ ] I/Os are specified - [ ] Sufficient Current and Voltage rating - [ ] Mating connectors have matching pinout - [ ] Same contact material specified for mating connectors - [ ] Testing - [ ] Test procedure written - [ ] Environmental - [ ] Specified min/max operating temperature - [ ] Specified min/max storage temperature - [ ] Specified min/max humidity - [ ] ROHS compliance requirement review ### Components - [ ] Unpopulated components are denoted DNI - [ ] Components meet environmental specifications - [ ] All components have quantity, reference designator and description - [ ] Suggested and alternate manufacturers listed - [ ] Price and stock checked for each component - [ ] Component derating - [ ] Voltage - [ ] Current - [ ] Power at worst-case operating temperature - [ ] Temperature at worst-case power ### Schematics - [ ] Document - [ ] Dot on each connection - [ ] No four-point connections - [ ] Title block completed for each sheet - [ ] All components have reference designators and values - [ ] Multi-part components don't have unplaced symbols - [ ] Page title present and consistent on all pages if not in title block - [ ] Symbols identify open collector/drain pins and internal pulled up/down pins - [ ] Pin names and attributes on symbols with multi-function pins should match actual design usage (I/O/Bi, Name) - [ ] Components follow preferred reference designator pattern <!-- Link to spec --> - [ ] External I/O - [ ] Filtered for EMI - [ ] Protected against electrostatic discharge (ESD) - [ ] Unused inputs terminated - [ ] Microcontrollers / ICs - [ ] Predictable or controlled power-up state - [ ] Reset filtered - [ ] Sufficient bypass capacitance - [ ] Oscillators checked for reliable startup - [ ] Pullups on open-collector pins - [ ] Logic-low and logic-high voltage levels checked - [ ] No-connect pins labeled NC - [ ] Clock lines with series termination and parallel termination component locations present even if not populated; zero ohm resistor for series, unpopulated parts for parallel termination - [ ] Check for input voltages applied with power off and CMOS latchup possibilities - [ ] Check the data sheet errata and apnotes for weird IC behaviors - [ ] Busses - [ ] UART/USART TX->RX and RX<-TX - [ ] I2C SDA and SCL pullup with appropriate value [per capacitance](https://www.ti.com/lit/an/slva689/slva689.pdf) - [ ] Setup, hold, access times for data and address busses - [ ] Analog - [ ] Sufficient power rails for analog circuits - [ ] Amplifiers checked for stability - [ ] Consider signal rate-of-rise and fall for noise radiation - [ ] General - [ ] Sufficient bulk capacitance calculated - [ ] Polarized components checked - [ ] Electrolytic/tantalum capacitors checked for no reverse voltage - [ ] Electrolytic/tantalum capacitors temperature/voltage derating sufficient for MTBF - [ ] Sufficient capacitance on low dropout voltage regulators - [ ] Sufficient time delays and slew rates for comparators - [ ] Sufficient common mode input voltage rating on opamps - [ ] Check pin numbers of all custom-generated parts - [ ] Check reverse base-emitter current/voltage on bipolar transistors - [ ] Power nets use preferred and consistent naming (ex. no `3.3V` vs `+3.3V`) - [ ] Debug resources added by design (leds, serial ports, etc.) even if unpopulated by default ### PCB - [ ] Manufacturing - [ ] PCB manufacturing requirements noted on `fab` layer - [ ] Plating specified - [ ] Plating material - [ ] Plating thickness - [ ] Layer stack-up specified - [ ] Minimum trace/space specified - [ ] Minimum hole size specified - [ ] PCB color specified - [ ] Silkscreen color specified - [ ] Controlled impedance specified - [ ] Blind or buried vias specified - [ ] Panelization specified - [ ] External routing specified (ex. v-groove vs route) - [ ] Drill table generated - [ ] All specifications exceed manufacturing tolerance - [ ] Space between power planes minimized - [ ] Solder paste openings proper size - [ ] Fiducials placed if necessary - [ ] Footprints - [ ] Pin 1 marked in a consistent manner - [ ] Component polarity marked - [ ] Diodes, LEDs - [ ] Electrolytic, tantalum capacitors - [ ] Keyed components like connectors - [ ] Footprint dimensions cross-checked with datasheet recommendation - [ ] Sufficient thermal pads on high-power components or nets - [ ] Placement - [ ] Jumpers accessible - [ ] Debug connectors accessible - [ ] Filter resistors closer to source - [ ] Termination resistors close to target - [ ] Small loop path on switch-mode power supplies - [ ] Bypass capacitors close to ICs - [ ] Bypass capacitors close to connectors - [ ] Drivers / receivers close to connectors - [ ] SMT components on top side, through-hole components on bottom side if possible - [ ] Clearance - [ ] Keep-out areas honored - [ ] Around mounting holes - [ ] For programming tools - [ ] For assembly tools (wrenches, screwdrivers etc.) - [ ] For connectors - [ ] Trace-to-trace clearance based upon voltage rating - [ ] Component size based upon voltage rating - [ ] Keep components away from board edge - [ ] Mechanical - [ ] CAD file uploaded - [ ] Clearance above connectors - [ ] Clearance below through-hole components - [ ] Enough space for the minimum bending radius of the wire harness - [ ] Mounting holes electrically isolated if necessary - [ ] Mounting holes have via stitching - [ ] Hole diameters leave margin for plating - [ ] Board outline defined - [ ] Mechanical enclosure defined - [ ] Internal corners are rounded and can be milled - [ ] Electrical - [ ] All traces are routed - [ ] Analog and digital commons joined at only one point - [ ] ERC passes - [ ] Isolation barriers are large enough - [ ] Signal integrity - [ ] Gaps in ground planes checked and minimized - [ ] High-speed signals avoid gaps in ground planes - [ ] Stubs minimized for high-speed signals - [ ] Differential pair spacing based upon impedance matching - [ ] Transmission lines terminated with an appropriate impedance - [ ] Crystal connections kept short - [ ] Guard ring around crystals - [ ] Traces avoided under sensitive components - [ ] Traces avoided under noisy components - [ ] Via fencing of sensitive RF transission lines done with the proper via spacing (< 1/20 lambda) - [ ] Option for a shielding can over sensitive circuitry e.g. RF? - [ ] Copper pour - [ ] All planes have been poured - [ ] Planes and pours checked for high-impedance paths - [ ] No pour between adjacent pins on ICs - [ ] Traces - [ ] Trace-pad connections sufficiently obtuse (angle 90 deg or more) - [ ] Trace widths sufficient for the current draw and max heating - [ ] No connections between adjacent pins on ICs - [ ] Vias for internal power traces sufficiently large - [ ] Mitered bends or soft curves (r > 3 trace width) for impedance sensitive traces - [ ] Thermal - [ ] Temperature sensitive components placed away from hot components - [ ] Thermal vias in thermal pads - [ ] Testing - [ ] Test points on PCBs for critical circuits, hard to reach nets - [ ] Ground connection points close to analog test points - [ ] Silk screen - [ ] Notes and documentation - [ ] Updated revision number - [ ] Updated date - [ ] Blank space designated for a serial / assembly number - [ ] No silk screen over pads / vias - [ ] Text is readable from at most two directions - [ ] Silk screen size / font will legible after printing - [ ] Connector pin-outs labeled - [ ] Fuse size and type marked on PCB - [ ] Functional groups marked - [ ] Functionality labeled - [ ] Test points - [ ] LEDs - [ ] Buttons - [ ] Connectors/terminals - [ ] Jumpers/fuses <!-- Special thanks to Henrik Enggaard Hansen for https://pcbchecklist.com/ -->
AllSpiceAlice added the
priority/5 - critical
feature
layout
firmware
mechanical
labels 2024-01-18 21:59:34 +00:00
AllSpiceAlice added 1 commit 2024-01-18 21:59:35 +00:00
allspice-admin-daniel added 1 commit 2024-01-18 22:01:58 +00:00
AllSpiceAlice requested review from RevaReviewa 2024-01-18 22:04:13 +00:00
AllSpiceAlice requested review from MikaChanical 2024-01-18 22:04:14 +00:00
AllSpiceAlice requested review from PavelInPurchasing 2024-01-18 22:04:14 +00:00
allspice-admin-daniel added 1 commit 2024-01-18 22:09:10 +00:00
AllSpiceAlice added 1 commit 2024-01-18 22:17:05 +00:00
This pull request can be merged automatically.
This branch is out-of-date with the base branch
You are not authorized to merge this pull request.
You can also view command line instructions.

Step 1:

From your project repository, check out a new branch and test the changes.
git checkout -b develop main
git pull origin develop

Step 2:

Merge the changes and update on AllSpice.
git checkout main
git merge --no-ff develop
git push origin main
Sign in to join this conversation.
No description provided.