hw-lpc55-carrier/docs/DesignNotes.md
2023-02-28 15:54:47 -06:00

8.7 KiB

Schematic Checklist

General

  • CAD ERC 100% clean. If some errors are invalid due to toolchain quirks, each exception must be inspected and signed off as invalid.
  • Verify pin numbers of all schematic symbols against datasheet or external interface specification document (if not yet board proven).
  • Schematic symbol matches chosen component package
  • Thermal pads are connected to correct power rail (may not always be ground)
  • Debug interfaces are not power gated in sleep mode

Passive components

  • Power/voltage/tolerance ratings specified as required
  • Ceramic capacitors appropriately de-rated for C/V curve
  • Polarized components specified in schematic if using electrolytic caps etc

Power supply

System power input

  • Fusing and/or reverse voltage protection at system power inlet
  • Check total input capacitance and add inrush limiter if needed

Regulators

  • Under/overvoltage protection configured correctly if used
  • Verify estimated power usage per rail against regulator rating
  • Current-sense resistors on power rails after regulator output caps, not in switching loop
  • Remote sense used on low voltage or high current rails
  • Linear regulators and voltage reference ICs are stable with selected output cap ESR
  • Confirm power rail sequencing against device datasheets

Decoupling

  • Decoupling present for all ICs
  • Decoupling meets/exceeds vendor recommendations if specified
  • Bulk decoupling present at PSU

General

  • All power inputs fed by correct voltage
  • Check high-power discrete semiconductors and passives to confirm they can handle expected load
  • Analog rails filtered/isolated from digital circuitry as needed

Signals

Digital

  • Signals are correct logic level for input pin
  • Pullups on all open-drain outputs
  • Pulldowns on all PECL outputs
  • Termination on all high-speed signals
  • AC coupling caps on gigabit transceivers
  • TX/RX paired correctly for UART, SPI, MGT, etc
  • Differential pair polarity / pairing correct
  • Active high/low enable signal polarity correct
  • I/O banking rules met on FPGAs etc

Analog

  • RC time constant for attenuators sane given ADC sampling frequency
  • Verify frequency response of RF components across entire operating range. Don't assume a "1-100 MHz" amplifier has the same gain across the whole range.
  • Verify polarity of op-amp feedback

Clocks

  • All oscillators meet required jitter / frequency tolerance. Be extra cautious with MEMS oscillators as these tend to have higher jitter.
  • Correct load caps provided for discrete crystals
  • Crystals only used if IC has an integrated crystal driver
  • Banking / clock capable input rules met for clocks going to FPGAs
    • Xilinx FPGAs: single ended clocks use _P half of differential pairs
    • If possible, create dummy design with all clocks and other key signals and verify it P&R's properly

Strap/init pins

  • Pullup/pulldowns on all signals that need defined state at boot
  • Strap pins connected to correct rail for desired state
  • JTAG/ICSP connector provided for all programmable devices
  • Config/boot flash provided for all FPGAs or MPUs without internal flash
  • Reference resistors correct value and reference rail

External interface protection

  • Power outputs (USB etc) current limited
  • ESD protection on data lines going off board

Debugging / reworkability

  • Use 0-ohm resistors vs direct hard-wiring for strap pins when possible
  • Provide multiple ground clips/points for scope probes
  • Dedicated ground in close proximity to analog test points
  • Test points on all power rails
  • Test points on interesting signals which may need probing for bringup/debug

Thermal

  • Power estimates for all large / high power ICs
  • Thermal calculations for all large / high power ICs
  • Specify heatsinks as needed

PCB Checklist

General

  • Schematic review complete and signed off, including pin swaps done during layout
  • Layout DRC 100% clean

Decoupling

  • Decoupling caps as close to power pins as possible
  • Low inductance mounting used for decoupling (prefer ViP if available, otherwise "[]8" shaped side vias

DFM / yield enhancement

  • All design rules within manufacturer's capability
  • Minimize use of vias/traces that push fab limits
  • Controlled impedance specified in fab notes if applicable
  • Confirm impedance calculations include soldermask, or mask removed from RF traces
  • Stackup verified with manufacturer and specified in fab notes
  • Board finish specified in fab notes
  • If panelizing, add panel location indicators for identifying location-specific reflow issues
  • (recommended) Layer number markers specified to ensure correct assembly
  • Fiducials present (on both sides of board) if targeting automated assembly
  • Fiducial pattern asymmetric to detect rotated or flipped boards
  • Soldermask/copper clearance on fiducials respected
  • Panelization specified if required

Footprints

  • Confirm components are available in the selected package
  • Confirm components (especially connectors and power regulators) are capable of desired current in the selected package
  • Verify schematic symbol matches the selected package
  • Confirm pinout diagram is from top vs bottom of package
  • (recommended) PCB printed 1:1 on paper and checked against physical parts
  • 3D models obtained (if available) and checked against footprints
  • Soldermask apertures on all SMT lands and PTH pads

Differential pairs

  • Routed differentially
  • Skew matched
  • Correct clearance to non-coupled nets

High-speed signals

  • Sufficient clearance to potential aggressors
  • Length matched if required
  • Minimize crossing reference plane splits/slots or changing layers, use caps/stitching vias if unavoidable
  • Confirm fab can do copper to edge of PCB for edge launch connectors
  • Double-check pad width on connectors and add plane cutouts if needed to minimize impedance discontinuities

Power

  • Minimal slots in planes from via antipads
  • Sufficient width for planes/traces for required current

Sensitive analog

  • Guard ring / EMI cages provided if needed
  • Physically separated from high current SMPS or other noise sources
  • Consider microphone effect on MLCCs if near strong sound sources

Mechanical

  • Confirm all connectors to other systems comply with the appropriate mechanical standard (connector orientation, key position, etc)
  • LEDs, buttons, and other UI elements on outward-facing side of board
  • Keep-outs around PCB perimeter, card guides, panelization mouse-bites, etc respected
  • Stress-sensitive components (MLCC) sufficiently clear from V-score or mouse bite locations, and oriented to reduce bending stress
  • Clearance around large ICs for heatsinks/fans if required
  • Clearance around pluggable connectors for mating cable/connector
  • Clearance around mounting holes for screws
  • Plane keepouts and clearance provided for shielded connectors, magnetics, etc
  • Confirm PCB dimensions and mounting hole size/placement against enclosure or card rack design
  • Verify mounting hole connection/isolation
  • Components not physically overlapping/colliding
  • Clearance provided around solder-in test points for probe tips

Thermal

  • Thermal reliefs used for plane connections (unless via is used for heatsinking)
  • Solid connections used to planes if heatsinking
  • Ensure thermal balance on SMT chip components to minimize risk of tombstoning

Solder paste

  • No uncapped vias in pads (except low-power QFNs where some voiding is acceptable)
  • QFN paste prints segmented
  • Small pads 100% size, larger pads reduced to avoid excessive solder volume
  • No paste apertures on card edge connectors or test points

Solder mask

  • Confirm SMD vs NSMD pad geometry
  • Adequate clearance around pads (typ. 50 um)

Silkscreen

  • Text size within fab limits
  • Text not overlapping drills or component pads
  • Text removed entirely in, or moved outside of, high component/via density areas
  • Traceability markings (rev, date, name, etc) provided
  • Silkscreen box provided for writing/sticking serial number
  • Text mirrored properly on bottom layer
  • Test points labeled if space permits

CAM production

  • KiCAD specific: rerun DRC and zone fills before exporting CAM files to ensure proper results
  • Export gerber/drill files at the same time to ensure consistency
  • Visually verify final CAM files to ensure no obvious misalignments