7
mirror of https://github.com/parallella/parallella-hw.git synced 2024-11-24 11:35:00 +00:00
parallella-hw/archive/boards/gen1.1/fpga/hdl/axi_master_wr.v
Andreas Olofsson 046706db8a Reorg
2016-02-03 00:43:14 -05:00

369 lines
13 KiB
Verilog

/*
File: axi_master_wr.v
This file is part of the Parallella FPGA Reference Design.
Copyright (C) 2013 Adapteva, Inc.
Contributed by Roman Trogan <support@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program (see the file COPYING). If not, see
<http://www.gnu.org/licenses/>.
*/
module axi_master_wr (/*AUTOARG*/
// Outputs
awid, awaddr, awlen, awsize, awburst, awlock, awcache, awprot,
awvalid, wid, wdata, wstrb, wlast, wvalid, bready,
emesh_wr_wait_inb,
// Inputs
aclk, eclk, reset, awready, wready, bid, bresp, bvalid,
emesh_access_outb, emesh_write_outb, emesh_datamode_outb,
emesh_ctrlmode_outb, emesh_dstaddr_outb, emesh_srcaddr_outb,
emesh_data_outb
);
parameter MIDW = 6; //ID Width
parameter MAW = 32; //Address Bus Width
parameter MDW = 64; //Data Bus Width
parameter ACH = MAW+2; //Width of all used Write Address Signals
parameter AFW = 4; //Address channel Fifo address width
parameter DFW = 4; //Data channel Fifo address width
parameter DCH = MDW+8; //Width of all used Write Data Signals
parameter STW = 8; //Number of strobes
//#########
//# Inputs
//#########
// global signals
input aclk; // clock source of the axi bus
input eclk; // clock source of emesh interface
input reset; // reset
//########################
//# Write address channel
//########################
input awready; //write address ready
//########################
//# Write data channel
//########################
input wready; //write ready
//#########################
//# Write response channel
//#########################
input [MIDW-1:0] bid; //response ID tag
input [1:0] bresp; //write response
input bvalid;//write response valid
//##############################
//# From the emesh interface
//##############################
input emesh_access_outb;
input emesh_write_outb;
input [1:0] emesh_datamode_outb;
input [3:0] emesh_ctrlmode_outb;
input [31:0] emesh_dstaddr_outb;
input [31:0] emesh_srcaddr_outb;
input [31:0] emesh_data_outb;
//##########
//# Outputs
//##########
//########################
//# Write address channel
//########################
output [MIDW-1:0] awid; //write address ID
output [MAW-1:0] awaddr; //write address
output [3:0] awlen; //burst lenght (the number of data transfers)
output [2:0] awsize; //burst size (the size of each transfer)
output [1:0] awburst; //burst type
output [1:0] awlock; //lock type (atomic characteristics)
output [3:0] awcache; //memory type
output [2:0] awprot; //protection type
output awvalid; //write address valid
//########################
//# Write data channel
//########################
output [MIDW-1:0] wid; //write ID tag (supported only in AXI3)
output [MDW-1:0] wdata; //write data
output [STW-1:0] wstrb; //write strobes
output wlast; //write last, indicates the last transfer in burst
output wvalid;//write valid
//########################
// Write response channel
//########################
output bready;//response ready
//##############################
//# To the emesh interface
//##############################
output emesh_wr_wait_inb;
/*AUTOINPUT*/
/*AUTOWIRE*/
//#########
//# Regs
//#########
reg [33:0] addr_reg;
reg [63:0] data_reg;
reg emesh_wr_access_reg;
reg ach_fifo_empty_reg;
reg [ACH-1:0] ach_fifo_reg;
reg [63:0] realgn_byte;
reg [63:0] realgn_hword;
reg dch_fifo_empty_reg;
reg [DCH-1:0] dch_fifo_reg;
reg [7:0] wstrb_hword;
reg [7:0] wstrb_byte;
//#########
//# Wires
//#########
wire emesh_wr_access;
wire [ACH-1:0] ach_fifo_in;
wire [ACH-1:0] ach_fifo_out;
wire ach_fifo_wr;
wire ach_fifo_rd;
wire ach_fifo_full;
wire ach_fifo_empty;
wire ach_advance;
wire awvalid_awready;
wire [2:0] realgn_ctrl;
wire byte_realgn;
wire hword_realgn;
wire word_realgn;
wire [63:0] realgn_word;
wire [63:0] data_realgn;
wire [DCH-1:0] dch_fifo_in;
wire [DCH-1:0] dch_fifo_out;
wire dch_fifo_wr;
wire dch_fifo_rd;
wire dch_fifo_empty;
wire dch_advance;
wire wvalid_wready;
wire [7:0] wstrb_realgn;
wire [7:0] wstrb_word;
wire dch_fifo_full;
//# Incoming transaction should be sampled to prevent timing issues
assign emesh_wr_wait_inb = ach_fifo_full | dch_fifo_full;
assign emesh_wr_access = emesh_access_outb & emesh_write_outb &
~emesh_wr_wait_inb;
always @ (posedge eclk)
if (emesh_wr_access)
addr_reg[33:0] <= {emesh_dstaddr_outb[31:0],emesh_datamode_outb[1:0]};
always @ (posedge eclk)
if (emesh_wr_access)
data_reg[63:0] <= {emesh_srcaddr_outb[31:0],emesh_data_outb[31:0]};
always @ (posedge eclk or posedge reset)
if(reset)
emesh_wr_access_reg <= 1'b0;
else if(~emesh_wr_wait_inb)
emesh_wr_access_reg <= emesh_wr_access;
//#######################################
//# Address channel synchronization FIFO
//#######################################
assign ach_fifo_in[ACH-1:0] = addr_reg[33:0];
assign ach_fifo_wr = emesh_wr_access_reg & ~emesh_wr_wait_inb;
assign ach_fifo_rd = ~ach_fifo_empty & (~awvalid | awvalid_awready);
assign ach_advance = awvalid_awready | ~awvalid;
/*fifo AUTO_TEMPLATE(.rd_clk (aclk),
.wr_clk (eclk),
.wr_data (ach_fifo_in[ACH-1:0]),
.rd_data (ach_fifo_out[ACH-1:0]),
.rd_fifo_empty (ach_fifo_empty),
.wr_fifo_full (ach_fifo_full),
.wr_write (ach_fifo_wr),
.rd_read (ach_fifo_rd),
);
*/
fifo #(.DW(ACH), .AW(AFW)) fifo_ach(/*AUTOINST*/
// Outputs
.rd_data (ach_fifo_out[ACH-1:0]), // Templated
.rd_fifo_empty (ach_fifo_empty), // Templated
.wr_fifo_full (ach_fifo_full), // Templated
// Inputs
.reset (reset),
.wr_clk (eclk), // Templated
.rd_clk (aclk), // Templated
.wr_write (ach_fifo_wr), // Templated
.wr_data (ach_fifo_in[ACH-1:0]), // Templated
.rd_read (ach_fifo_rd)); // Templated
//# The data is sampled after exiting FIFO to prevent timing issues
always @ (posedge aclk or posedge reset)
if(reset)
ach_fifo_empty_reg <= 1'b1;
else if(ach_advance)
ach_fifo_empty_reg <= ach_fifo_empty;
always @ (posedge aclk)
if (ach_advance)
ach_fifo_reg[ACH-1:0] <= ach_fifo_out[ACH-1:0];
assign awid[MIDW-1:0] = {(MIDW){1'b0}};
assign awaddr[MAW-1:0] = ach_fifo_reg[ACH-1:2];
assign awlen[3:0] = 4'b0000;
assign awsize[2:0] = {1'b0,ach_fifo_reg[1:0]};
assign awburst[1:0] = 2'b01;
assign awlock[1:0] = 2'b00;
assign awcache[3:0] = 4'b0000;
assign awprot[2:0] = 3'b000; //unprivileged, secured
assign awvalid = ~ach_fifo_empty_reg;
assign awvalid_awready = awvalid & awready;
//#######################################
//# Data channel synchronization FIFO
//#######################################
assign realgn_ctrl[2:0] = addr_reg[4:2];
assign byte_realgn = (addr_reg[1:0] == 2'b00);
assign hword_realgn = (addr_reg[1:0] == 2'b01);
assign word_realgn = (addr_reg[1:0] == 2'b10);
always @ (realgn_ctrl[2:0] or data_reg[7:0])
begin
casez (realgn_ctrl[2:0])
3'b000 : realgn_byte[63:0] = {{(56){1'b0}},data_reg[7:0] };
3'b001 : realgn_byte[63:0] = {{(48){1'b0}},data_reg[7:0],{( 8){1'b0}}};
3'b010 : realgn_byte[63:0] = {{(40){1'b0}},data_reg[7:0],{(16){1'b0}}};
3'b011 : realgn_byte[63:0] = {{(32){1'b0}},data_reg[7:0],{(24){1'b0}}};
3'b100 : realgn_byte[63:0] = {{(24){1'b0}},data_reg[7:0],{(32){1'b0}}};
3'b101 : realgn_byte[63:0] = {{(16){1'b0}},data_reg[7:0],{(40){1'b0}}};
3'b110 : realgn_byte[63:0] = {{(8){1'b0}},data_reg[7:0] ,{(48){1'b0}}};
3'b111 : realgn_byte[63:0] = { data_reg[7:0] ,{(56){1'b0}}};
default: realgn_byte[63:0] = {{(56){1'b0}},data_reg[7:0]};
endcase // casez (realgn_ctrl[2:0])
end // always @ (realgn_ctrl[2:0])
always @ (realgn_ctrl[2:1] or data_reg[15:0])
begin
casez (realgn_ctrl[2:1])
2'b00 : realgn_hword[63:0] = {{(48){1'b0}},data_reg[15:0]};
2'b01 : realgn_hword[63:0] = {{(32){1'b0}},data_reg[15:0],{(16){1'b0}}};
2'b10 : realgn_hword[63:0] = {{(16){1'b0}},data_reg[15:0],{(32){1'b0}}};
2'b11 : realgn_hword[63:0] = { data_reg[15:0],{(48){1'b0}}};
default: realgn_hword[63:0] = {{(48){1'b0}},data_reg[15:0]};
endcase // casez (realgn_ctrl[2:1])
end
assign realgn_word[63:0] = realgn_ctrl[2] ? {data_reg[31:0],{(32){1'b0}}} :
{{(32){1'b0}},data_reg[31:0]};
assign data_realgn[63:0] = byte_realgn ? realgn_byte[63:0] :
hword_realgn ? realgn_hword[63:0]:
word_realgn ? realgn_word[63:0] :
data_reg[63:0];
//Write Strobes creation
always @ (realgn_ctrl[2:0])
begin
casez (realgn_ctrl[2:0])
3'b000 : wstrb_byte[7:0] = 8'b00000001;
3'b001 : wstrb_byte[7:0] = 8'b00000010;
3'b010 : wstrb_byte[7:0] = 8'b00000100;
3'b011 : wstrb_byte[7:0] = 8'b00001000;
3'b100 : wstrb_byte[7:0] = 8'b00010000;
3'b101 : wstrb_byte[7:0] = 8'b00100000;
3'b110 : wstrb_byte[7:0] = 8'b01000000;
3'b111 : wstrb_byte[7:0] = 8'b10000000;
default: wstrb_byte[7:0] = 8'b00000001;
endcase // casez (realgn_ctrl[2:0])
end // always @ (realgn_ctrl[2:0])
always @ (realgn_ctrl[2:1])
begin
casez (realgn_ctrl[2:1])
2'b00 : wstrb_hword[7:0] = 8'b00000011;
2'b01 : wstrb_hword[7:0] = 8'b00001100;
2'b10 : wstrb_hword[7:0] = 8'b00110000;
2'b11 : wstrb_hword[7:0] = 8'b11000000;
default: wstrb_hword[7:0] = 8'b00000011;
endcase // casez (realgn_ctrl[2:1])
end
assign wstrb_word[7:0] = realgn_ctrl[2] ? 8'b11110000 : 8'b00001111;
assign wstrb_realgn[7:0] = byte_realgn ? wstrb_byte[7:0] :
hword_realgn ? wstrb_hword[7:0]:
word_realgn ? wstrb_word[7:0] : {(8){1'b1}};
assign dch_fifo_in[DCH-1:0] = {data_realgn[63:0],wstrb_realgn[7:0]};
assign dch_fifo_wr = emesh_wr_access_reg & ~emesh_wr_wait_inb;
assign dch_fifo_rd = ~dch_fifo_empty & (~wvalid | wvalid_wready);
assign dch_advance = wvalid_wready | ~wvalid;
/*fifo AUTO_TEMPLATE(.rd_clk (aclk),
.wr_clk (eclk),
.wr_data (dch_fifo_in[DCH-1:0]),
.rd_data (dch_fifo_out[DCH-1:0]),
.rd_fifo_empty (dch_fifo_empty),
.wr_fifo_full (dch_fifo_full),
.wr_write (dch_fifo_wr),
.rd_read (dch_fifo_rd),
);
*/
fifo #(.DW(DCH), .AW(DFW)) fifo_dch(/*AUTOINST*/
// Outputs
.rd_data (dch_fifo_out[DCH-1:0]), // Templated
.rd_fifo_empty (dch_fifo_empty), // Templated
.wr_fifo_full (dch_fifo_full), // Templated
// Inputs
.reset (reset),
.wr_clk (eclk), // Templated
.rd_clk (aclk), // Templated
.wr_write (dch_fifo_wr), // Templated
.wr_data (dch_fifo_in[DCH-1:0]), // Templated
.rd_read (dch_fifo_rd)); // Templated
//# The data is sampled after exiting FIFO to prevent timing issues
always @ (posedge aclk or posedge reset)
if(reset)
dch_fifo_empty_reg <= 1'b1;
else if(dch_advance)
dch_fifo_empty_reg <= dch_fifo_empty;
always @ (posedge aclk)
if (dch_advance)
dch_fifo_reg[DCH-1:0] <= dch_fifo_out[DCH-1:0];
assign wid[MIDW-1:0] = {(MIDW){1'b0}};
assign wdata[MDW-1:0] = dch_fifo_reg[DCH-1:8];
assign wstrb[STW-1:0] = dch_fifo_reg[7:0];
assign wlast = 1'b1;
assign wvalid = ~dch_fifo_empty_reg;
assign wvalid_wready = wvalid & wready;
assign bready = 1'b1;
endmodule // axi_master_wr